Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Potential Adverse Ultrasound-related Biological Effects : A Critical Review

      ,
      Anesthesiology
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrasound energy exerts important cellular, genetic, thermal, and mechanical effects. Concern about the safety of ultrasound prompted several agencies to devise regulatory limits on the machine output intensities. The visual display of thermal and mechanical indices during ultrasound imaging provides an aid to limit the output of the machine. Despite many animal studies, no human investigations conducted to date have documented major physiologic consequences of ultrasound exposed during imaging. To date, ultrasound imaging appears to be safe for use in regional anesthesia and pain medicine interventions, and adherence to limiting the output of ultrasound machines as outlined by the Food and Drug Administration may avoid complications in the future. This article reviews ultrasound-related biologic effects, the role of the regulatory agencies in ensuring safety with the use of ultrasound, and the limitations and implications of ultrasound use in humans.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Ultrasound-biophysics mechanisms.

          Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and biological materials interact. Ultrasound-induced bioeffect or risk studies focus on issues related to the effects of ultrasound on biological materials. On the other hand, when biological materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides the scientific basis for image production and risk assessment. Relative to the bioeffect or risk studies, that is, the biophysical mechanisms by which ultrasound affects biological materials, ultrasound-induced bioeffects are generally separated into thermal and non-thermal mechanisms. Ultrasonic dosimetry is concerned with the quantitative determination of ultrasonic energy interaction with biological materials. Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the amplitude of the wave decreases with distance. This attenuation is due to either absorption or scattering. Absorption is a mechanism that represents that portion of ultrasonic wave that is converted into heat, and scattering can be thought of as that portion of the wave, which changes direction. Because the medium can absorb energy to produce heat, a temperature rise may occur as long as the rate of heat production is greater than the rate of heat removal. Current interest with thermally mediated ultrasound-induced bioeffects has focused on the thermal isoeffect concept. The non-thermal mechanism that has received the most attention is acoustically generated cavitation wherein ultrasonic energy by cavitation bubbles is concentrated. Acoustic cavitation, in a broad sense, refers to ultrasonically induced bubble activity occurring in a biological material that contains pre-existing gaseous inclusions. Cavitation-related mechanisms include radiation force, microstreaming, shock waves, free radicals, microjets and strain. It is more challenging to deduce the causes of mechanical effects in tissues that do not contain gas bodies. These ultrasonic biophysics mechanisms will be discussed in the context of diagnostic ultrasound exposure risk concerns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical bioeffects of ultrasound.

            Ultrasound is used widely in medicine as both a diagnostic and therapeutic tool. Through both thermal and nonthermal mechanisms, ultrasound can produce a variety of biological effects in tissues in vitro and in vivo. This chapter provides an overview of the fundamentals of key nonthermal mechanisms for the interaction of ultrasound with biological tissues. Several categories of mechanical bioeffects of ultrasound are then reviewed to provide insight on the range of ultrasound bioeffects in vivo, the relevance of these effects to diagnostic imaging, and the potential application of mechanical bioeffects to the design of new therapeutic applications of ultrasound in medicine.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Production of reversible changes in the central nervous system by ultrasound.

                Bookmark

                Author and article information

                Journal
                Anesthesiology
                Anesthesiology
                Ovid Technologies (Wolters Kluwer Health)
                0003-3022
                2011
                November 2011
                : 115
                : 5
                : 1109-1124
                Article
                10.1097/ALN.0b013e31822fd1f1
                21866043
                74844e59-cc66-4ece-bf13-b1e2c3b4539b
                © 2011
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,779

                Cited by29

                Most referenced authors672