The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wavefunctions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, we discuss nonlinear features of ES ion waves and electron plasma oscillations (ESOs), as well as the trapping of intense EM waves in quantum electron density cavities. Specifically, simulation studies of the coupled nonlinear Schr\"odinger (NLS) and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. We also discuss the effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic (Q-MHD) equations. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects, in plasma-assisted nanotechnology, and in the next-generation of intense laser-solid density plasma interaction experiments.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.