18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sample Preparation by Easy Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid Extraction

      , , ,
      Molecular & Cellular Proteomics
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main challenge of bottom-up proteomic sample preparation is to extract proteomes in a manner that enables efficient protein digestion for subsequent mass spectrometric analysis. Today's sample preparation strategies are commonly conceptualized around the removal of detergents, which are essential for extraction but strongly interfere with digestion and LC-MS. These multi-step preparations contribute to a lack of reproducibility as they are prone to losses, biases and contaminations, while being time-consuming and labor-intensive. We report a detergent-free method, named Sample Preparation by Easy Extraction and Digestion (SPEED), which consists of three mandatory steps, acidification, neutralization and digestion. SPEED is a universal method for peptide generation from various sources and is easily applicable even for lysis-resistant sample types as pure trifluoroacetic acid (TFA) is used for highly efficient protein extraction by complete sample dissolution. The protocol is highly reproducible, virtually loss-less, enables very rapid sample processing and is superior to the detergent/chaotropic agent-based methods FASP, ISD-Urea and SP3 for quantitative proteomics. SPEED holds the potential to dramatically simplify and standardize sample preparation while improving the depth of proteome coverage especially for challenging samples.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Direct analysis of protein complexes using mass spectrometry.

          We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis.

            Despite recent developments in bottom-up proteomics, the need still exists in a fast, uncomplicated, and robust method for comprehensive sample processing especially when applied to low protein amounts. The suspension trapping method combines the advantage of efficient SDS-based protein extraction with rapid detergent removal, reactor-type protein digestion, and peptide cleanup. Proteins are solubilized in SDS. The sample is acidified and introduced into the suspension trapping tip incorporating the depth filter and hydrophobic compartments, filled with the neutral pH methanolic solution. The instantly formed fine protein suspension is trapped in the depth filter stack-this crucial step is aimed at separating the particulate matter in space. SDS and other contaminants are removed in the flow-through, and a protease is introduced. Following the digestion, the peptides are cleaned up using the tip's hydrophobic part. The methodology allows processing of protein loads down to the low microgram/submicrogram levels. The detergent removal takes about 5 min, whereas the tryptic proteolysis of a cellular lysate is complete in as little as 30 min. We have successfully utilized the method for analysis of cellular lysates, enriched membrane preparations, and immunoprecipitates. We expect that due to its robustness and simplicity, the method will become an essential proteomics tool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform

              Mass spectrometry has transformed the field of cell signaling by enabling global studies of dynamic protein phosphorylation ('phosphoproteomics'). Recent developments are enabling increasingly sophisticated phosphoproteomics studies, but practical challenges remain. The EasyPhos workflow addresses these and is sufficiently streamlined to enable the analysis of hundreds of phosphoproteomes at a depth of >10,000 quantified phosphorylation sites. Here we present a detailed and updated workflow that further ensures high performance in sample-limited conditions while also reducing sample preparation time. By eliminating protein precipitation steps and performing the entire protocol, including digestion, in a single 96-well plate, we now greatly minimize opportunities for sample loss and variability. This results in very high reproducibility and a small sample size requirement (≤200 μg of protein starting material). After cell culture or tissue collection, the protocol takes 1 d, whereas mass spectrometry measurements require ~1 h per sample. Applied to glioblastoma cells acutely treated with epidermal growth factor (EGF), EasyPhos quantified 20,132 distinct phosphopeptides from 200 μg of protein in less than 1 d of measurement time, revealing thousands of EGF-regulated phosphorylation events.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Molecular & Cellular Proteomics
                Mol Cell Proteomics
                American Society for Biochemistry & Molecular Biology (ASBMB)
                1535-9476
                1535-9484
                January 01 2020
                January 2020
                January 2020
                November 21 2019
                : 19
                : 1
                : 209-222
                Article
                10.1074/mcp.TIR119.001616
                6944244
                31754045
                743c927e-bf52-4d77-b8df-a4e37faea6d7
                © 2019
                History

                Comments

                Comment on this article