65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PIWI Associated siRNAs and piRNAs Specifically Require the Caenorhabditis elegans HEN1 Ortholog henn-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small RNAs—including piRNAs, miRNAs, and endogenous siRNAs—bind Argonaute proteins to form RNA silencing complexes that target coding genes, transposons, and aberrant RNAs. To assess the requirements for endogenous siRNA formation and activity in Caenorhabditis elegans, we developed a GFP-based sensor for the endogenous siRNA 22G siR-1, one of a set of abundant siRNAs processed from a precursor RNA mapping to the X chromosome, the X-cluster. Silencing of the sensor is also dependent on the partially complementary, unlinked 26G siR-O7 siRNA. We show that 26G siR-O7 acts in trans to initiate 22G siRNA formation from the X-cluster. The presence of several mispairs between 26G siR-O7 and the X-cluster mRNA, as well as mutagenesis of the siRNA sensor, indicates that siRNA target recognition is permissive to a degree of mispairing. From a candidate reverse genetic screen, we identified several factors required for 22G siR-1 activity, including the chromatin factors mes-4 and gfl-1, the Argonaute ergo-1, and the 3′ methyltransferase henn-1. Quantitative RT–PCR of small RNAs in a henn-1 mutant and deep sequencing of methylated small RNAs indicate that siRNAs and piRNAs that associate with PIWI clade Argonautes are methylated by HENN-1, while siRNAs and miRNAs that associate with non-PIWI clade Argonautes are not. Thus, PIWI-class Argonaute proteins are specifically adapted to associate with methylated small RNAs in C. elegans.

          Author Summary

          RNA interference (RNAi) is the process in which endogenous small RNA pathways are exploited by researchers to direct RNA silencing of particular genes. Plants and animals use endogenous RNA silencing pathways for protection against viruses and transposable elements and to regulate genes during development. The features that route genes into specific RNA silencing pathways are poorly understood. Furthermore, it is not clear how small RNAs identify target mRNAs and how they repress their activity. Here, we show that a single siRNA target site is sufficient to trigger gene silencing in C. elegans without requiring perfect complementarity for target recognition. We also discovered an endogenous siRNA that acts in trans to initiate siRNA amplification. Finally, we show that siRNAs and PIWI-interacting RNAs (piRNAs) that bind specifically to PIWI clade Argonautes are methylated by the C. elegans HEN1 ortholog HENN-1.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.

          We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing.

            RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans.

              Double-stranded RNAs can suppress expression of homologous genes through an evolutionarily conserved process named RNA interference (RNAi) or post-transcriptional gene silencing (PTGS). One mechanism underlying silencing is degradation of target mRNAs by an RNP complex, which contains approximately 22 nt of siRNAs as guides to substrate selection. A bidentate nuclease called Dicer has been implicated as the protein responsible for siRNA production. Here we characterize the Caenorhabditis elegans ortholog of Dicer (K12H4.8; dcr-1) in vivo and in vitro. dcr-1 mutants show a defect in RNAi. Furthermore, a combination of phenotypic abnormalities and RNA analysis suggests a role for dcr-1 in a regulatory pathway comprised of small temporal RNA (let-7) and its target (e.g., lin-41).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2012
                April 2012
                19 April 2012
                : 8
                : 4
                : e1002616
                Affiliations
                [1]Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                Stanford University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: TAM GR. Performed the experiments: TAM Y-SR CZ RHD CMP SEJF. Analyzed the data: TAM. Wrote the paper: TAM GR.

                Article
                PGENETICS-D-11-01926
                10.1371/journal.pgen.1002616
                3334881
                22536158
                742e209a-67c4-4c46-a5b9-8dc791b8d04e
                Montgomery et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 September 2011
                : 3 February 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genetics
                Genomics
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article