37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Brain immunology and immunotherapy in brain tumours

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gliomas, the most common malignant primary brain tumours, remain universally lethal. Yet, seminal discoveries in the past 5 years have clarified the anatomy, genetics and function of the immune system within the central nervous system (CNS) and altered the paradigm for successful immunotherapy. The impact of standard therapies on the response to immunotherapy is now better understood, as well. This new knowledge has implications for a broad range of tumours that develop within the CNS. Nevertheless, the requirements for successful therapy remain effective delivery and target specificity, while the dramatic heterogeneity of malignant gliomas at the genetic and immunological levels remains a profound challenge.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.

          A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia and macrophages in brain homeostasis and disease

            Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

              Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cancer
                Nat Rev Cancer
                Springer Science and Business Media LLC
                1474-175X
                1474-1768
                December 5 2019
                Article
                10.1038/s41568-019-0224-7
                7327710
                31806885
                741e8f67-0cc7-44c0-9d94-d68f5cfb49c7
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article