41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computer aided selection of candidate vaccine antigens

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoinformatics is an emergent branch of informatics science that long ago pullulated from the tree of knowledge that is bioinformatics. It is a discipline which applies informatic techniques to problems of the immune system. To a great extent, immunoinformatics is typified by epitope prediction methods. It has found disappointingly limited use in the design and discovery of new vaccines, which is an area where proper computational support is generally lacking. Most extant vaccines are not based around isolated epitopes but rather correspond to chemically-treated or attenuated whole pathogens or correspond to individual proteins extract from whole pathogens or correspond to complex carbohydrate. In this chapter we attempt to review what progress there has been in an as-yet-underexplored area of immunoinformatics: the computational discovery of whole protein antigens. The effective development of antigen prediction methods would significantly reduce the laboratory resource required to identify pathogenic proteins as candidate subunit vaccines. We begin our review by placing antigen prediction firmly into context, exploring the role of reverse vaccinology in the design and discovery of vaccines. We also highlight several competing yet ultimately complementary methodological approaches: sub-cellular location prediction, identifying antigens using sequence similarity, and the use of sophisticated statistical approaches for predicting the probability of antigen characteristics. We end by exploring how a systems immunomics approach to the prediction of immunogenicity would prove helpful in the prediction of antigens.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          SYFPEITHI: database for MHC ligands and peptide motifs.

          The first version of the major histocompatibility complex (MHC) databank SYFPEITHI: database for MHC ligands and peptide motifs, is now available to the general public. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. All motifs currently available are accessible as individual entries. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database content is restricted to published data only.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of lipoprotein signal peptides in Gram-negative bacteria.

            A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipocalin protein family: structure and function.

              The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
                Bookmark

                Author and article information

                Journal
                Immunome Res
                Immunome Research
                BioMed Central
                1745-7580
                2010
                3 November 2010
                : 6
                : Suppl 2
                : S1
                Affiliations
                [1 ]School of Life and Health Sciences, University of Aston, Aston Triangle, Birmingham, B4 7ET, UK
                [2 ]The Jenner Institute, University of Oxford, Compton, Berkshire, UK
                [3 ]Current address: OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Rd. Nottingham, UK
                [4 ]Current address: Medical Genetics Section, University of Edinburgh, Edinburgh, UK
                [5 ]Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
                [6 ]Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st., 1000 Sofia, Bulgaria
                Article
                1745-7580-6-S2-S1
                10.1186/1745-7580-6-S2-S1
                2981880
                21067543
                7409cd91-d79c-44e0-975e-f0b800d9faae
                Copyright ©2010 Flower et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review

                Immunology
                Immunology

                Comments

                Comment on this article