27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even in the absence of sensory stimulation the brain is spontaneously active. This background “noise” seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN), which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network’s spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network’s behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural responses can be accounted for by a simple deterministic recurrent neural network which learns a predictive model of its sensory environment via a combination of generic neural plasticity mechanisms.

          Author Summary

          Neural recordings seem very noisy. If the exact same stimulus is shown to an animal multiple times, the neural response will vary substantially. In fact, the activity of a single neuron shows many features of a random process. Furthermore, the spontaneous activity occurring in the absence of any sensory stimulus, which is usually considered a kind of background noise, often has a magnitude comparable to the activity evoked by stimulus presentation and interacts with sensory inputs in interesting ways. Here we show that the key features of neural variability and spontaneous activity can all be accounted for by a simple and completely deterministic neural network learning a predictive model of its sensory inputs. The network’s deterministic dynamics give rise to structured but variable responses matching key experimental findings obtained in different mammalian species with different recording techniques. Our results suggest that the notorious variability of neural recordings and the complex features of spontaneous brain activity could reflect the dynamics of a largely deterministic but highly adaptive network learning a predictive model of its sensory environment.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Noise in the nervous system.

          Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

            Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs. These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.

              Q Bi, G Bi, M Poo (1998)
              In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb's rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                December 2015
                29 December 2015
                : 11
                : 12
                : e1004640
                Affiliations
                [1 ]Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
                [2 ]International Max Planck Research School for Neural Circuits, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
                [3 ]Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max-Planck-Society, Frankfurt am Main, Germany
                University of Tübingen and Max Planck Institute for Biologial Cybernetics, GERMANY
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CH AL BN JT. Performed the experiments: CH. Analyzed the data: CH. Contributed reagents/materials/analysis tools: AL. Wrote the paper: CH AL BN JT.

                Article
                PCOMPBIOL-D-14-01811
                10.1371/journal.pcbi.1004640
                4694925
                26714277
                7401139b-5966-442b-907a-25780dda7eb5
                © 2015 Hartmann et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 3 October 2014
                : 2 November 2015
                Page count
                Figures: 8, Tables: 0, Pages: 35
                Funding
                CH and JT received funding by the LOEWE-Program Neural Coordination Research Focus Frankfurt (NeFF). CH, JT and BN received funding by the Quandt foundation. AL received funding by the Deutsche Forschungsgemeinschaft (DFG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                The corresponding code is available on github: https://github.com/chrhartm/SORN.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article