86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown.

          Methodology/Principal Findings

          Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation.

          Conclusion/Significance

          These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target for treatment of metastatic disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Microenvironmental regulation of metastasis.

          Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct role of macrophages in different tumor microenvironments.

            Macrophages are prominent in the stromal compartment of virtually all types of malignancy. These highly versatile cells respond to the presence of stimuli in different parts of tumors with the release of a distinct repertoire of growth factors, cytokines, chemokines, and enzymes that regulate tumor growth, angiogenesis, invasion, and/or metastasis. The distinct microenvironments where tumor-associated macrophages (TAM) act include areas of invasion where TAMs promote cancer cell motility, stromal and perivascular areas where TAMs promote metastasis, and avascular and perinecrotic areas where hypoxic TAMs stimulate angiogenesis. This review will discuss the evidence for differential regulation of TAMs in these microenvironments and provide an overview of current attempts to target or use TAMs for therapeutic purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The metastatic niche: adapting the foreign soil.

              The 'seed and soil' hypothesis for metastasis sets forth the concept that a conducive microenvironment, or niche, is required for disseminating tumour cells to engraft distant sites. This Opinion presents emerging data that support this concept and outlines the potential mechanism and temporal sequence by which changes occur in tissues distant from the primary tumour. To enable improvements in the prognosis of advanced malignancy, early interventions that target both the disseminating seed and the metastatic soil are likely to be required.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                10 August 2009
                : 4
                : 8
                : e6562
                Affiliations
                [1 ]Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health, Center for the Study of Reproductive Biology and Woman's Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [2 ]Radiation Oncology & Biology, University of Oxford Churchill Hospital, Headington, United Kingdom
                [3 ]Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [4 ]Division of Developmental Biology, Department of Ophthalmology, The Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
                Charité-Universitätsmedizin Berlin, Germany
                Author notes

                Conceived and designed the experiments: BQ JWP. Performed the experiments: BQ. Analyzed the data: BQ YD JHI JL JWP. Contributed reagents/materials/analysis tools: JHI RJM YZ RL. Wrote the paper: BQ JWP.

                [¤]

                Current address: Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York, United States of America

                Article
                09-PONE-RA-10044R1
                10.1371/journal.pone.0006562
                2721818
                19668347
                7400a6d3-4052-42a3-97e2-bde13a2f7c66
                Qian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 April 2009
                : 3 July 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Immunology/Innate Immunity
                Oncology/Breast Cancer
                Women's Health/Breast Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article