3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells

      1 , 2 , 3
      Annual Review of Condensed Matter Physics
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

            Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hybrid functionals based on a screened Coulomb potential

                Bookmark

                Author and article information

                Journal
                Annual Review of Condensed Matter Physics
                Annu. Rev. Condens. Matter Phys.
                Annual Reviews
                1947-5454
                1947-5462
                March 10 2021
                March 10 2021
                : 12
                : 1
                : 95-109
                Affiliations
                [1 ]Department of Physics, Kyungpook National University, Daegu 41566 Korea;
                [2 ]Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom;
                [3 ]Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
                Article
                10.1146/annurev-conmatphys-042020-025347
                73e7a465-7c26-49fc-b078-e53b2d837a35
                © 2021
                History

                Comments

                Comment on this article