3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye

      , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir—Hinshelwood model obtaining a kinetic constant k = 7.81 × 10−2 min−1 for BWO and k = 9.27 × 10−2 min−1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Recent developments in photocatalytic water treatment technology: a review.

          In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photocatalysis. A multi-faceted concept for green chemistry.

            Photocatalysis (by semiconductors, molecules and ions) is used in such diverse applications as water hydrolysis for producing hydrogen as fuel, organic synthesis and the recovery of polluted effluents. This tutorial review discusses the common principles of such applications and their role in green chemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxicological effects of malachite green.

              This review summarises the wide range of toxicological effects of malachite green (MG), a triarylmethane dye on various fish species and certain mammals. MG is widely used in aquaculture as a parasiticide and in food, health, textile and other industries for one or the other purposes. It controls fungal attacks, protozoan infections and some other diseases caused by helminths on a wide variety of fish and other aquatic organisms. However, the dye has generated much concern regarding its use, due to its reported toxic effects. The toxicity of this dye increases with exposure time, temperature and concentration. It has been reported to cause carcinogenesis, mutagenesis, chromosomal fractures, teratogenecity and respiratory toxicity. Histopathological effects of MG include multi-organ tissue injury. Significant alterations occur in biochemical parameters of blood in MG exposed fish. Residues of MG and its reduced form, leucomalachite green have been reported from serum, liver, kidney, muscles and other tissues as also from eggs and fry. Toxicity occurs in some mammals, including organ damage, mutagenic, carcinogenic and developmental abnormalities. However, despite the large amount of data on its toxic effects, MG is still used as a parasiticide in aquaculture and other industries. It is concluded that the potential of alternative parasiticides, like humic acid, chlorine dioxide and Pyceze, should be explored to replace MG. Until then, MG should be used with extreme care at suitable concentrations and at times when the temperature is low. Removal of residual MG in treatment ponds should also be considered.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                May 2022
                May 12 2022
                : 23
                : 10
                : 5422
                Article
                10.3390/ijms23105422
                9140923
                35628232
                73c4b6cf-1fbb-4fb2-a59b-7077b9b0c626
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article