30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasma membrane resealing is a Ca(2+)-dependent process that involves the exocytosis of intracellular vesicles next to the wound site. Recent studies revealed that conventional lysosomes behave as Ca(2+)-regulated secretory compartments and play a central role in membrane resealing. These findings raised the possibility that the complex pathology of lysosomal diseases might also include defects in plasma membrane repair. Here, we investigated the capacity for lysosomal exocytosis and membrane resealing of fibroblasts derived from Chediak-Higashi syndrome (CHS) patients, or from beige-J mice. By using a sensitive electroporation/fluorescence-activated cell sorter-based assay, we show that lysosomal exocytosis triggered by membrane wounding is impaired in both human Chediak-Higashi and mouse beige-J fibroblasts. Lysosomal exocytosis increased when the normal size of lysosomes was restored in beige-J cells by expression of the CHS/Beige protein. A similar effect was seen when the lysosomal enlargement in beige-J cells was reversed by treatment with E64d. In addition, the survival of Chediak-Higashi and beige-J fibroblasts after wounding was reduced, indicating that impaired lysosomal exocytosis inhibits membrane resealing in these mutant cells. Thus, the severe symptoms exhibited by CHS patients may also include defects in the ability of cells to repair plasma membrane lesions.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells

          Similar to its role in secretory cells, calcium triggers exocytosis in nonsecretory cells. This calcium-dependent exocytosis is essential for repair of membrane ruptures. Using total internal reflection fluorescence microscopy, we observed that many organelles implicated in this process, including ER, post-Golgi vesicles, late endosomes, early endosomes, and lysosomes, were within 100 nm of the plasma membrane (in the evanescent field). However, an increase in cytosolic calcium led to exocytosis of only the lysosomes. The lysosomes that fused were predominantly predocked at the plasma membrane, indicating that calcium is primarily responsible for fusion and not recruitment of lysosomes to the cell surface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptotagmin VII Regulates Ca2+-Dependent Exocytosis of Lysosomes in Fibroblasts

            Synaptotagmins (Syts) are transmembrane proteins with two Ca2+-binding C2 domains in their cytosolic region. Syt I, the most widely studied isoform, has been proposed to function as a Ca2+ sensor in synaptic vesicle exocytosis. Several of the twelve known Syts are expressed primarily in brain, while a few are ubiquitous (Sudhof, T.C., and J. Rizo. 1996. Neuron. 17: 379–388; Butz, S., R. Fernandez-Chacon, F. Schmitz, R. Jahn, and T.C. Sudhof. 1999. J. Biol. Chem. 274:18290–18296). The ubiquitously expressed Syt VII binds syntaxin at free Ca2+ concentrations ([Ca2+]) below 10 μM, whereas other isoforms require 200–500 μM [Ca2+] or show no Ca2+-dependent syntaxin binding (Li, C., B. Ullrich, Z. Zhang, R.G.W. Anderson, N. Brose, and T.C. Sudhof. 1995. Nature. 375:594–599). We investigated the involvement of Syt VII in the exocytosis of lysosomes, which is triggered in several cell types at 1–5 μM [Ca2+] (Rodríguez, A., P. Webster, J. Ortego, and N.W. Andrews. 1997. J. Cell Biol. 137:93–104). Here, we show that Syt VII is localized on dense lysosomes in normal rat kidney (NRK) fibroblasts, and that GFP-tagged Syt VII is targeted to lysosomes after transfection. Recombinant fragments containing the C2A domain of Syt VII inhibit Ca2+-triggered secretion of β-hexosaminidase and surface translocation of Lgp120, whereas the C2A domain of the neuronal- specific isoform, Syt I, has no effect. Antibodies against the Syt VII C2A domain are also inhibitory in both assays, indicating that Syt VII plays a key role in the regulation of Ca2+-dependent lysosome exocytosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impaired membrane resealing and autoimmune myositis in synaptotagmin VII–deficient mice

              Members of the synaptotagmin family have been proposed to function as Ca2+ sensors in membrane fusion. Syt VII is a ubiquitously expressed synaptotagmin previously implicated in plasma membrane repair and Trypanosoma cruzi invasion, events which are mediated by the Ca2+-regulated exocytosis of lysosomes. Here, we show that embryonic fibroblasts from Syt VII–deficient mice are less susceptible to trypanosome invasion, and defective in lysosomal exocytosis and resealing after wounding. Examination of mutant mouse tissues revealed extensive fibrosis in the skin and skeletal muscle. Inflammatory myopathy, with muscle fiber invasion by leukocytes and endomysial collagen deposition, was associated with elevated creatine kinase release and progressive muscle weakness. Interestingly, similar to what is observed in human polymyositis/dermatomyositis, the mice developed a strong antinuclear antibody response, characteristic of autoimmune disorders. Thus, defective plasma membrane repair in tissues under mechanical stress may favor the development of inflammatory autoimmune disease.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 30 2004
                November 30 2004
                November 22 2004
                November 30 2004
                : 101
                : 48
                : 16795-16800
                Article
                10.1073/pnas.0405905101
                534728
                15557559
                73bc8e34-68ed-4420-aeb4-23246bddeaad
                © 2004
                History

                Comments

                Comment on this article