22
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adverse events following COVID‐19 mRNA vaccines: A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          Since publishing successful clinical trial results of mRNA coronavirus disease 2019 (COVID‐19) vaccines in December 2020, multiple reports have arisen about cardiovascular complications following the mRNA vaccination. This study provides an in‐depth account of various cardiovascular adverse events reported after the mRNA vaccines' first or second dose including pericarditis/myopericarditis, myocarditis, hypotension, hypertension, arrhythmia, cardiogenic shock, stroke, myocardial infarction/STEMI, intracranial hemorrhage, thrombosis (deep vein thrombosis, cerebral venous thrombosis, arterial or venous thrombotic events, portal vein thrombosis, coronary thrombosis, microvascular small bowel thrombosis), and pulmonary embolism.

          Methods

          A systematic review of original studies reporting confirmed cardiovascular manifestations post‐mRNA COVID‐19 vaccination was performed. Following the PRISMA guidelines, electronic databases (PubMed, PMC NCBI, and Cochrane Library) were searched until January 2022. Baseline characteristics of patients and disease outcomes were extracted from relevant studies.

          Results

          A total of 81 articles analyzed confirmed cardiovascular complications post‐COVID‐19 mRNA vaccines in 17,636 individuals and reported 284 deaths with any mRNA vaccine. Of 17,636 cardiovascular events with any mRNA vaccine, 17,192 were observed with the BNT162b2 (Pfizer−BioNTech) vaccine, 444 events with mRNA‐1273 (Moderna). Thrombosis was frequently reported with any mRNA vaccine ( n = 13,936), followed by stroke ( n = 758), myocarditis ( n = 511), myocardial infarction ( n = 377), pulmonary embolism ( n = 301), and arrhythmia ( n = 254). Stratifying the results by vaccine type showed that thrombosis (80.8%) was common in the BNT162b2 cohort, while stroke (39.9%) was common with mRNA‐1273 for any dose. The time between the vaccination dosage and the first symptom onset averaged 5.6 and 4.8 days with the mRNA‐1273 vaccine and BNT162b2, respectively. The mRNA‐1273 cohort reported 56 deaths compared to the 228 with BNT162b2, while the rest were discharged or transferred to the ICU.

          Conclusion

          Available literature includes more studies with the BNT162b2 vaccine than mRNA‐1273. Future studies must report mortality and adverse cardiovascular events by vaccine types.

          Abstract

          We aim to summarize the events of cardiac complications following the mRNA coronavirus disease 2019 vaccine, providing an in‐depth analysis of their occurrences, and their implications. The review includes 69 case reports/case series, 4 studies with data obtained from electronic medical records (hospital surveillance data, national database, VAERS/VigiBase), and 8 observational studies including prospective/retrospective cohort.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement

          Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Terminology The terminology used to describe a systematic review and meta-analysis has evolved over time. One reason for changing the name from QUOROM to PRISMA was the desire to encompass both systematic reviews and meta-analyses. We have adopted the definitions used by the Cochrane Collaboration.9 A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies. Meta-analysis refers to the use of statistical techniques in a systematic review to integrate the results of included studies. Developing the PRISMA Statement A 3-day meeting was held in Ottawa, Canada, in June 2005 with 29 participants, including review authors, methodologists, clinicians, medical editors, and a consumer. The objective of the Ottawa meeting was to revise and expand the QUOROM checklist and flow diagram, as needed. The executive committee completed the following tasks, prior to the meeting: a systematic review of studies examining the quality of reporting of systematic reviews, and a comprehensive literature search to identify methodological and other articles that might inform the meeting, especially in relation to modifying checklist items. An international survey of review authors, consumers, and groups commissioning or using systematic reviews and meta-analyses was completed, including the International Network of Agencies for Health Technology Assessment (INAHTA) and the Guidelines International Network (GIN). The survey aimed to ascertain views of QUOROM, including the merits of the existing checklist items. The results of these activities were presented during the meeting and are summarized on the PRISMA Website. Only items deemed essential were retained or added to the checklist. Some additional items are nevertheless desirable, and review authors should include these, if relevant.10 For example, it is useful to indicate whether the systematic review is an update11 of a previous review, and to describe any changes in procedures from those described in the original protocol. Shortly after the meeting a draft of the PRISMA checklist was circulated to the group, including those invited to the meeting but unable to attend. A disposition file was created containing comments and revisions from each respondent, and the checklist was subsequently revised 11 times. The group approved the checklist, flow diagram, and this summary paper. Although no direct evidence was found to support retaining or adding some items, evidence from other domains was believed to be relevant. For example, Item 5 asks authors to provide registration information about the systematic review, including a registration number, if available. Although systematic review registration is not yet widely available,12,13 the participating journals of the International Committee of Medical Journal Editors (ICMJE)14 now require all clinical trials to be registered in an effort to increase transparency and accountability.15 Those aspects are also likely to benefit systematic reviewers, possibly reducing the risk of an excessive number of reviews addressing the same question16,17 and providing greater transparency when updating systematic reviews. The PRISMA Statement The PRISMA Statement consists of a 27-item checklist (Table 1; see also Text S1 for a downloadable template for researchers to re-use) and a 4-phase flow diagram (Figure 1; see also Figure S1 for a downloadable template for researchers to re-use). The aim of the PRISMA Statement is to help authors improve the reporting of systematic reviews and meta-analyses. We have focused on randomized trials, but PRISMA can also be used as a basis for reporting systematic reviews of other types of research, particularly evaluations of interventions. PRISMA may also be useful for critical appraisal of published systematic reviews. However, the PRISMA checklist is not a quality assessment instrument to gauge the quality of a systematic review. Box 1 Conceptual issues in the evolution from QUOROM to PRISMA Figure 1 Flow of information through the different phases of a systematic review Table 1 Checklist of items to include when reporting a systematic review or meta-analysis From QUOROM to PRISMA The new PRISMA checklist differs in several respects from the QUOROM checklist, and the substantive specific changes are highlighted in Table 2. Generally, the PRISMA checklist “decouples” several items present in the QUOROM checklist and, where applicable, several checklist items are linked to improve consistency across the systematic review report. Table 2 Substantive specific changes between the QUOROM checklist and the PRISMA checklist (a tick indicates the presence of the topic in QUOROM or PRISMA) The flow diagram has also been modified. Before including studies and providing reasons for excluding others, the review team must first search the literature. This search results in records. Once these records have been screened and eligibility criteria applied, a smaller number of articles will remain. The number of included articles might be smaller (or larger) than the number of studies, because articles may report on multiple studies and results from a particular study may be published in several articles. To capture this information, the PRISMA flow diagram now requests information on these phases of the review process. Endorsement The PRISMA Statement should replace the QUOROM Statement for those journals that have endorsed QUOROM. We hope that other journals will support PRISMA; they can do so by registering on the PRISMA Website. To underscore to authors, and others, the importance of transparent reporting of systematic reviews, we encourage supporting journals to reference the PRISMA Statement and include the PRISMA web address in their Instructions to Authors. We also invite editorial organizations to consider endorsing PRISMA and encourage authors to adhere to its principles. The PRISMA Explanation and Elaboration Paper In addition to the PRISMA Statement, a supporting Explanation and Elaboration document has been produced18 following the style used for other reporting guidelines.19-21 The process of completing this document included developing a large database of exemplars to highlight how best to report each checklist item, and identifying a comprehensive evidence base to support the inclusion of each checklist item. The Explanation and Elaboration document was completed after several face-to-face meetings and numerous iterations among several meeting participants, after which it was shared with the whole group for additional revisions and final approval. Finally, the group formed a dissemination subcommittee to help disseminate and implement PRISMA. Discussion The quality of reporting of systematic reviews is still not optimal.22-27 In a recent review of 300 systematic reviews, few authors reported assessing possible publication bias,22 even though there is overwhelming evidence both for its existence28 and its impact on the results of systematic reviews.29 Even when the possibility of publication bias is assessed, there is no guarantee that systematic reviewers have assessed or interpreted it appropriately.30 Although the absence of reporting such an assessment does not necessarily indicate that it was not done, reporting an assessment of possible publication bias is likely to be a marker of the thoroughness of the conduct of the systematic review. Several approaches have been developed to conduct systematic reviews on a broader array of questions. For example, systematic reviews are now conducted to investigate cost-effectiveness,31 diagnostic32 or prognostic questions,33 genetic associations,34 and policy-making.35 The general concepts and topics covered by PRISMA are all relevant to any systematic review, not just those whose objective is to summarize the benefits and harms of a health care intervention. However, some modifications of the checklist items or flow diagram will be necessary in particular circumstances. For example, assessing the risk of bias is a key concept, but the items used to assess this in a diagnostic review are likely to focus on issues such as the spectrum of patients and the verification of disease status, which differ from reviews of interventions. The flow diagram will also need adjustments when reporting individual patient data meta-analysis.36 We have developed an explanatory document18 to increase the usefulness of PRISMA. For each checklist item, this document contains an example of good reporting, a rationale for its inclusion, and supporting evidence, including references, whenever possible. We believe this document will also serve as a useful resource for those teaching systematic review methodology. We encourage journals to include reference to the explanatory document in their Instructions to Authors. Like any evidence-based endeavour, PRISMA is a living document. To this end we invite readers to comment on the revised version, particularly the new checklist and flow diagram, through the PRISMA website. We will use such information to inform PRISMA's continued development. Note: To encourage dissemination of the PRISMA Statement, this article is freely accessible on the Open Medicine website and the PLoS Medicine website and is also published in the Annals of Internal Medicine, BMJ, and Journal of Clinical Epidemiology. The authors jointly hold the copyright of this article. For details on further use, see the PRISMA website. The PRISMA Explanation and Elaboration Paper is available at the PLoS Medicine website. Supporting Information Figure S1 Flow of information through the different phases of a systematic review (downloadable template document for researchers to re-use) Text S1 Checklist of items to include when reporting a systematic review or meta-analysis (downloadable template document for researchers to re-use)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vaccine hesitancy: the next challenge in the fight against COVID-19

            Vaccine hesitancy remains a barrier to full population inoculation against highly infectious diseases. Coincident with the rapid developments of COVID-19 vaccines globally, concerns about the safety of such a vaccine could contribute to vaccine hesitancy. We analyzed 1941 anonymous questionnaires completed by healthcare workers and members of the general Israeli population, regarding acceptance of a potential COVID-19 vaccine. Our results indicate that healthcare staff involved in the care of COVID-19 positive patients, and individuals considering themselves at risk of disease, were more likely to self-report acquiescence to COVID-19 vaccination if and when available. In contrast, parents, nurses, and medical workers not caring for SARS-CoV-2 positive patients expressed higher levels of vaccine hesitancy. Interventional educational campaigns targeted towards populations at risk of vaccine hesitancy are therefore urgently needed to combat misinformation and avoid low inoculation rates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.

              DNA and RNA stimulate the mammalian innate immune system through activation of Toll-like receptors (TLRs). DNA containing methylated CpG motifs, however, is not stimulatory. Selected nucleosides in naturally occurring RNA are also methylated or otherwise modified, but the immunomodulatory effects of these alterations remain untested. We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of modified nucleosides m5C, m6A, m5U, s2U, or pseudouridine ablates activity. Dendritic cells (DCs) exposed to such modified RNA express significantly less cytokines and activation markers than those treated with unmodified RNA. DCs and TLR-expressing cells are potently activated by bacterial and mitochondrial RNA, but not by mammalian total RNA, which is abundant in modified nucleosides. We conclude that nucleoside modifications suppress the potential of RNA to activate DCs. The innate immune system may therefore detect RNA lacking nucleoside modification as a means of selectively responding to bacteria or necrotic tissue.
                Bookmark

                Author and article information

                Contributors
                m.mahmmoud96@gmail.com
                Journal
                Immun Inflamm Dis
                Immun Inflamm Dis
                10.1002/(ISSN)2050-4527
                IID3
                Immunity, Inflammation and Disease
                John Wiley and Sons Inc. (Hoboken )
                2050-4527
                17 March 2023
                March 2023
                : 11
                : 3 ( doiID: 10.1002/iid3.v11.3 )
                : e807
                Affiliations
                [ 1 ] Department of Internal Medicine Dow University of Health Sciences Karachi Pakistan
                [ 2 ] Division of Nephrology and Hypertension, Mayo Clinic Rochester Minnesota USA
                [ 3 ] Department of Cardiovascular Medicine University of Cincinnati Cincinnati Ohio USA
                [ 4 ] Department of Cardiovascular Medicine Westchester Medical Center Valhalla New York USA
                [ 5 ] Department of Cardiovascular Medicine Baylor College of Medicine Houston Texas USA
                [ 6 ] Department of Community Medicine University of Bakht Alruda Ed Dueim Sudan
                [ 7 ] Department of Radiology Pakistan Kidney and Liver Institute and Research Center Lahore Pakistan
                Author notes
                [*] [* ] Correspondence Mohammed Mahmmoud Fadelallah Eljack, Faculty of Medicine and Health Sciences, University of Bakht Alruda, Ed Dueim, Sudan.

                Email: m.mahmmoud96@ 123456gmail.com

                Author information
                http://orcid.org/0000-0001-6705-2030
                http://orcid.org/0000-0002-2370-9368
                Article
                IID3807
                10.1002/iid3.807
                10022421
                36988252
                7395290d-9f51-4889-9339-ac487439b212
                © 2023 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 December 2022
                : 14 July 2022
                : 24 February 2023
                Page count
                Figures: 6, Tables: 2, Pages: 10, Words: 5276
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                March 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.6 mode:remove_FC converted:17.03.2023

                cardiovascular complications,covid‐19 vaccines,genes,infection,pfizer−biontech,public health,sars‐cov‐2

                Comments

                Comment on this article