Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A substrate specificity-determining unit of three Lin12-Notch repeat modules is formed in trans within the pappalysin-1 dimer and requires a sequence stretch C-terminal to the third module.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Members of the pappalysin family of metzincin metalloproteinases, pregnancy-associated plasma protein-A (PAPP-A, pappalysin-1) and PAPP-A2 (pappalysin-2), regulate the bioavailability of insulin-like growth factors (IGFs) by specific proteolytic inactivation of IGF-binding proteins (IGFBPs). PAPP-A cleaves IGFBP-4 and IGFBP-5, whereas PAPP-A2 cleaves only IGFBP-5. The pappalysins contain three Lin12-Notch repeat (LNR1-3) modules, previously considered unique to the Notch receptor family in which they function to regulate receptor cleavage. In contrast to the Notch receptor where three LNR modules are tandemly arranged, LNR3 is separated by more than 1000 residues from LNR1-2 in the pappalysin sequence. Each of the three LNR modules of PAPP-A is required for proteolysis of IGFBP-4, but not IGFBP-5. However, we here find that a C-terminal truncated variant of PAPP-A, which lacks LNR3 and therefore activity against IGFBP-4, cleaves IGFBP-4 when co-expressed with a PAPP-A variant, which is mutated in the active site. This suggests that LNR3 from the inactive subunit interacts in trans with LNR1-2 of the truncated PAPP-A subunit to form a functional trimeric LNR unit. We also show that formation of such a functional LNR unit depends on dimerization, as dissociation of a mutated non-covalent PAPP-A dimer results in reduced activity against IGFBP-4, but not IGFBP-5. Using PAPP-A/PAPP-A2 chimeras, we demonstrate that PAPP-A2 LNR1-2, but not LNR3, are functionally conserved with respect to IGFBP proteolysis. Additionally, we find that a sequence stretch C-terminal to LNR3 and single residues (Asp1521, Arg1529, and Asp1530) within this are required for LNR functionality.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Apr 13 2007
          : 282
          : 15
          Affiliations
          [1 ] Department of Molecular Biology, University of Aarhus, Aarhus DK-8000, Denmark.
          Article
          S0021-9258(20)76676-7
          10.1074/jbc.M607903200
          17314100
          737ebe97-47bd-46c2-93e6-ed7558540a52
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content36

          Cited by15