35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication ( via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro-proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          An EB1-binding motif acts as a microtubule tip localization signal.

          Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche.

            We review the morphofunctional characteristics of pericytes and report our observations. After a brief historical background, we consider the following aspects of pericytes: A) Origin in embryonic vasculogenesis (mesenchymal stem cells, neurocrest and other possible sources) and in embryonic and postnatal life angiogenesis (pre-existing pericytes, fibroblast/ myofibroblasts and circulating progenitor cells). B) Location in pericytic microvasculature and in the other blood vessels (including transitional cell forms and absence in lymphatic vessels), incidence (differences depending on species, topographical location, and type and stage of vessels) and distribution (specific polarities) in blood vessels. C) Morphology (cell body, and longitudinal and circumferential cytoplasmic processes), structure (nucleus, cytoplasmic organelles and distribution of microtubules, intermediate filaments and microfilaments) and surface (caveolae system). D) Basement membrane disposition, formation, components and functions. E) Contacts with endothelial cells (ECs) (peg and socket arrangements, adherent junctions and gap junctions) and with basal membrane (adhesion plaques). F) Molecular expression (pericyte marker identification). G) Functions, such as vessel stabilization, regulation of vascular tone and maintenance of local and tissue homeostasis (contractile capacity and vessel permeability regulation), matrix protein synthesis, macrophage-like properties, immunological defense, intervention in coagulation, participation in mechanisms that regulate the quiescent and angiogenic stages of blood vessels (including the behaviour of pericytes during sprouting angiogenesis and intussuceptive vascular growth, as well as pericyte interactions with endothelium and other cells, and with extracellular matrix) and plasticity, as progenitor cells with great mesenchymal potential, originating other pericytes, fibroblast/myofibroblasts, preadipocytes, chondroblasts, osteoblasts, odontoblasts, vascular smooth muscle and myointimal cells. This mesenchymal capacity is seen in a broad section on the perivascular mesenchymal cell niche hypothesis and in the concept of pericyte and EC "marriage and divorce". H) Peculiar pericyte types, such as hepatic stellate cells (Ito cells), bone marrow reticular cells and mesangial cells. I) Involvement in pathological processes, such as repair through granulation tissue, pericyte-derived tumors, tumor angiogenesis and tumoral cell metastasis, diabetic microangiopathy, fibrosis, atherosclerosis and calcific vasculopathy, lymphedema distichiasis, chronic venous insufficiency, pulmonary hypertension, Alzheimer disease and multiple sclerosis. J) Clinical and therapeutic implications (de-stabilization of vessels or formation of a stable vasculature).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions.

              Two-dimensional high performance liquid chromatography is a useful tool for proteome analysis, providing a greater peak capacity than single-dimensional LC. The most popular 2D-HPLC approach used today for proteomic research combines strong cation exchange and reversed-phase HPLC. We have evaluated an alternative mode for 2D-HPLC of peptides, employing reversed-phase columns in both separation dimensions. The orthogonality of 2D separation was investigated for selected types of RP stationary phases, ion-pairing agents and mobile phase pH. The pH appears to have the most significant impact on the RP-LC separation selectivity; the greatest orthogonality was achieved for the system with C18 columns using pH 10 in the first and pH 2.6 in the second LC dimension. Separation was performed in off-line mode with partial fraction evaporation. The achievable peak capacity in RP-RP-HPLC and overall performance compares favorably to SCX-RP-HPLC and holds promise for proteomic analysis.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                John Wiley & Sons, Ltd (Chichester, UK )
                1582-1838
                1582-4934
                June 2014
                24 July 2014
                : 18
                : 6
                : 1035-1059
                Affiliations
                [a ]Fudan University Center for Clinical Bioinformatics, Zhongshan Hospital, Fudan University School of Medicine Shanghai, China
                [b ]Division of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
                [c ]Department of Molecular Medicine, Victor Babeş National Institute of Pathology Bucharest, Romania
                [d ]Department of Chemistry, Institute of Biomedical Sciences, Fudan University Shanghai, China
                [e ]Department of Ultrastructural Pathology, Victor Babeş National Institute of Pathology Bucharest, Romania
                [f ]Division of Advanced Studies, Victor Babes National Institute of Pathology Bucharest, Romania
                [g ]Department of Anesthesiology, Zhongshan Hospital Shanghai, China
                [h ]Jinshan Hospital Fudan University Shanghai, China
                Author notes
                * Correspondence to: Hao Fang, M.D., Ph.D., Email: drfanghao@ 123456163.com ;
                * Xiangdong WANG, M.D., Ph.D.,, E-mail: xiangdong.wang@ 123456clintransmed.org
                * L.M. POPESCU, M.D., Ph.D.,, E-mail: LMP@ 123456jcmm.org
                [#]

                YZ and DC had equal contributions to this article.

                Article
                10.1111/jcmm.12350
                4508144
                25059386
                7346c662-aea2-484b-a74b-74d26953ca0d
                © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 March 2014
                : 23 April 2014
                Categories
                Original Articles

                Molecular medicine
                telocytes,microvascular endothelial cells,proteomics,itraq,lc-ms/ms,lung,intercellular signalling

                Comments

                Comment on this article