3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interactive deciphering electron-shuttling characteristics of agricultural wastes with potential bioenergy-steered anti-COVID-19 activity via microbial fuel cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This first-attempt study explored indigenous herbs from agricultural waste with bioenergy and biorefinery-stimulating potentials for possible anti-COVID-19 drug development. As prior novel study revealed, medicinal herbs abundant in ortho-dihydroxyl substituents and flavonoid-bearing chemicals were likely not only electron shuttle (ES)-steered, but also virus transmission-resisted.

          Methods

          Herbal extract preparation from agricultural wastes were implemented via traditional Chinese medicine (TCM) decoction pot. After filtration and evaporation, a crude extract obtained was used for evaluation of bioenergy-stimulating and electron-mediating characteristics via microbial fuel cells (MFCs). Combined with cyclic voltammetric analysis, MFCs provided a novel platform to distinguish electron shuttles from antioxidants with electron-transfer steered antiviral potentials of herbal extracts.

          Significant findings

          After 50 serial cyclic voltammogram traces, considerable ES activities of herbal extracts still stably remained, indicating that possible medication-associated capabilities could be persistent. This work also extended to explore bioenergy-stimulating herbs from agricultural waste recycling for bioenergy and biorefinery applications. Water extract of Coffea arabica was more biotoxic than ethanolic extract, resulting in its lower power-generating capability. The findings revealed that water extract of Trichodesma khasianum and Euphorbia hirta could exhibit considerable bioenergy-enhancing effects. For cradle-to-cradle circular economy, agricultural waste could be specifically screened for possible regeneration of value-added anti-COVID-19 drugs via bioenergy selection.

          Graphical abstract

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of plant extracts containing phenolic compounds.

          The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial fuel cells: methodology and technology.

            Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. Describing MFC systems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19)

              Graphical abstract The Coronavirus Disease 2019 (COVID-19) has been declared as a global pandemic, but specific medicines and vaccines are still being developed. In China, interventional therapies with traditional Chinese medicine for COVID-19 have achieved significant clinical efficacies, but the underlying pharmacological mechanisms are still unclear. This article reviewed the etiology of COVID-19 and clinical efficacy. Both network pharmacological study and literature search were used to demonstrate the possible action mechanisms of Chinese medicines in treating COVID-19. We found that Chinese medicines played the role of antivirus, anti-inflammation and immunoregulation, and target organs protection in the management of COVID-19 by multiple components acting on multiple targets at multiple pathways. AEC2 and 3CL protein could be the direct targets for inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Quercetin, kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and wogonin could be the main active ingredients of Chinese medicines for the management of COVID-19 by targeting on AEC2 and 3CL protein and inhibiting inflammatory mediators, regulating immunity, and eliminating free radicals through COX-2, CASP3, IL-6, MAPK1, MAPK14, MAPK8, and REAL in the signaling pathways of IL-17, arachidonic acid, HIF-1, NF-κB, Ras, and TNF. This study may provide meaningful and useful information on further research to investigate the action mechanisms of Chinese medicines against SARS-CoV-2 and also provide a basis for sharing the “China scheme" for COVID-19 treatment.
                Bookmark

                Author and article information

                Journal
                J Taiwan Inst Chem Eng
                J Taiwan Inst Chem Eng
                Journal of the Taiwan Institute of Chemical Engineers
                Taiwan Institute of Chemical Engineers. Published by Elsevier B.V.
                1876-1070
                1876-1089
                18 June 2022
                July 2022
                18 June 2022
                : 136
                : 104426
                Affiliations
                [a ]Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
                [b ]Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
                Author notes
                [* ]Corresponding author.
                Article
                S1876-1070(22)00223-1 104426
                10.1016/j.jtice.2022.104426
                9212887
                733074ba-d108-4eaa-a65a-50f472c46d26
                © 2022 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 20 May 2022
                : 9 June 2022
                : 10 June 2022
                Categories
                Article

                microbial fuel cells,bioenergy and biorefinery,agricultural waste recycling,trichodesma khasianum,euphorbia hirta,covid-19

                Comments

                Comment on this article