5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal profiles of cortisol accumulation and clearance support scale cortisol content as an indicator of chronic stress in fish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of chronic stress indicators for fish is of great interest, but appropriate non-invasive methods are lagging those used in terrestrial vertebrates. Here, we explore the possibility that levels of the stress hormone cortisol in scales could be used as a chronic stress indicator. Three experiments were conducted to assess the temporal profiles of cortisol rise and fall in plasma and scales of goldfish ( Carassius auratus) in response to stressors of varying intensity and duration. Results show that a single acute air emersion stressor does not influence scale cortisol content. In contrast, relative to plasma levels, the fall in scale cortisol content following a high-dose cortisol implant is delayed by at least 8 days, and the rise and fall in scale cortisol content in response to unpredictable chronic stress are delayed by at least 7 days. Also, scale cortisol content is spatially heterogeneous across the body surface of goldfish. Overall, since high and sustained circulating cortisol levels are needed to influence scale cortisol content and the rates of cortisol accumulation and clearance are much slower in scales than in plasma, our results show that scales can provide an integrated measure of cortisol production and serve as a chronic stress indicator.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions.

          The detrimental effects of stress on human health are being increasingly recognized. There is a critical need for the establishment of a biomarker that accurately measures its intensity and course over time. Such a biomarker would allow monitoring of stress, increase understanding of its pathophysiology and may help identify appropriate and successful management strategies. Whereas saliva and urine cortisol capture real-time levels, hair cortisol analysis presents a complementary means of monitoring stress, capturing systemic cortisol exposure over longer periods of time. This novel approach for cortisol quantification is being increasingly used to identify the effects of stress in a variety of pathological situations, from chronic pain to acute myocardial infarctions. Because of its ability to provide a long-term, month-by-month measure of systemic cortisol exposure, hair cortisol analysis is becoming a useful tool, capable of answering clinical questions that could previously not be answered by other tests. In this paper we review the development, current status, limitations and outstanding questions regarding the use of hair cortisol as a biomarker of chronic stress. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hair cortisol, stress exposure, and mental health in humans: a systematic review.

            The deleterious effects of chronic stress on health and its contribution to the development of mental illness attract broad attention worldwide. An important development in the last few years has been the employment of hair cortisol analysis with its unique possibility to assess the long-term systematic levels of cortisol retrospectively. This review makes a first attempt to systematically synthesize the body of published research on hair cortisol, chronic stress, and mental health. The results of hair cortisol studies are contrasted and integrated with literature on acutely circulating cortisol as measured in bodily fluids, thereby combining cortisol baseline concentration and cortisol reactivity in an attempt to understand the cortisol dynamics in the development and/or maintenance of mental illnesses. The studies on hair cortisol and chronic stress show increased hair cortisol levels in a wide range of contexts/situations (e.g. endurance athletes, shift work, unemployment, chronic pain, stress in neonates, major life events). With respect to mental illnesses, the results differed between diagnoses. In major depression, the hair cortisol concentrations appear to be increased, whereas for bipolar disorder, cortisol concentrations were only increased in patients with a late age-of-onset. In patients with anxiety (generalized anxiety disorder, panic disorder), hair cortisol levels were reported to be decreased. The same holds true for patients with posttraumatic stress disorder, in whom - after an initial increase in cortisol release - the cortisol output decreases below baseline. The effect sizes are calculated when descriptive statistics are provided, to enable preliminary comparisons across the different laboratories. For exposure to chronic stressors, the effect sizes on hair cortisol levels were medium to large, whereas for psychopathology, the effect sizes were small to medium. This is a first implication that the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in the development and/or maintenance of psychopathology may be more subtle than it is in healthy but chronically stressed populations. Future research possibilities regarding the application of hair cortisol research in mental health and the need for multidisciplinary approaches are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The concept of allostasis in biology and biomedicine.

              Living organisms have regular patterns and routines that involve obtaining food and carrying out life history stages such as breeding, migrating, molting, and hibernating. The acquisition, utilization, and storage of energy reserves (and other resources) are critical to lifetime reproductive success. There are also responses to predictable changes, e.g., seasonal, and unpredictable challenges, i.e., storms and natural disasters. Social organization in many populations provides advantages through cooperation in providing basic necessities and beneficial social support. But there are disadvantages owing to conflict in social hierarchies and competition for resources. Here we discuss the concept of allostasis, maintaining stability through change, as a fundamental process through which organisms actively adjust to both predictable and unpredictable events. Allostatic load refers to the cumulative cost to the body of allostasis, with allostatic overload being a state in which serious pathophysiology can occur. Using the balance between energy input and expenditure as the basis for applying the concept of allostasis, we propose two types of allostatic overload. Type 1 allostatic overload occurs when energy demand exceeds supply, resulting in activation of the emergency life history stage. This serves to direct the animal away from normal life history stages into a survival mode that decreases allostatic load and regains positive energy balance. The normal life cycle can be resumed when the perturbation passes. Type 2 allostatic overload begins when there is sufficient or even excess energy consumption accompanied by social conflict and other types of social dysfunction. The latter is the case in human society and certain situations affecting animals in captivity. In all cases, secretion of glucocorticosteroids and activity of other mediators of allostasis such as the autonomic nervous system, CNS neurotransmitters, and inflammatory cytokines wax and wane with allostatic load. If allostatic load is chronically high, then pathologies develop. Type 2 allostatic overload does not trigger an escape response, and can only be counteracted through learning and changes in the social structure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Conserv Physiol
                Conserv Physiol
                conphys
                Conservation Physiology
                Oxford University Press
                2051-1434
                2019
                11 October 2019
                11 October 2019
                : 7
                : 1
                : coz052
                Affiliations
                [1] Department of Integrative Biology, University of Guelph , 50 Stone Road East, Guelph, ON, Canada, N1G 2WI
                Author notes
                Corresponding author: Nicholas J. Bernier, University of Guelph, Department of Integrative Biology, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1. Tel: (519) 824-4120 ext. 56093. Fax: (519) 767-1656. Email: nbernier@ 123456uoguelph.ca
                Author information
                http://orcid.org/0000-0003-4953-7063
                Article
                coz052
                10.1093/conphys/coz052
                6788491
                31620290
                7320c764-be9e-4b5e-84d6-faf57ebd6f62
                © The Author(s) 2019. Published by Oxford University Press and the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 February 2019
                : 15 June 2019
                : 5 July 2019
                : 4 July 2019
                Page count
                Pages: 13
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Funded by: Canada First Research Excellence Fund 10.13039/501100010785
                Categories
                Research Article

                cortisol,goldfish (carassius auratus),implant,integrated measure of stress,scales,unpredictable chronic stress

                Comments

                Comment on this article