22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.

          Methods

          Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.

          Results

          Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.

          Conclusion

          We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term hyperglycemia produces oxidative damage and apoptosis in neurons.

          Dorsal root ganglia neurons in culture die through programmed cell death when exposed to elevated glucose, providing an in vitro model system for the investigation of the mechanisms leading to diabetic neuropathy. This study examines the time course of programmed cell death induction, regulation of cellular antioxidant capacity, and the protective effects of antioxidants in neurons exposed to hyperglycemia. We demonstrate that the first 2 h of hyperglycemia are sufficient to induce oxidative stress and programmed cell death. Using fluorimetric analysis of reactive oxygen species (ROS) production, in vitro assays of antioxidant enzymes, and immunocytochemical assays of cell death, we demonstrate superoxide formation, inhibition of aconitase, and lipid peroxidation within 1 h of hyperglycemia. These are followed by caspase-3 activation and DNA fragmentation. Antioxidant potential increases by 3-6 h but is insufficient to protect these neurons. Application of the antioxidant alpha-lipoic acid potently prevents glucose-induced oxidative stress and cell death. This study identifies cellular therapeutic targets to prevent diabetic neuropathy. Since oxidative stress is a common feature of the micro- and macrovascular complications of diabetes, the present findings have broad application to the treatment of diabetic patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis.

            Patients with long-standing diabetes commonly suffer from gastric neuromuscular dysfunction (gastropathy) causing symptoms ranging from postprandial bloating to recurrent vomiting. Autonomic neuropathy is generally believed to be responsible for diabetic gastropathy and the underlying impairments in gastric emptying (gastroparesis) and receptive relaxation, but the specific mechanisms have not been elucidated. Recently, it has been recognized that interstitial cells of Cajal generate electrical pacemaker activity and mediate motor neurotransmission in the stomach. Loss or defects in interstitial cells could contribute to the development of diabetic gastroparesis. Gastric motility was characterized in spontaneously diabetic NOD/LtJ mice by measuring gastric emptying and by monitoring spontaneous and induced electrical activity in circular smooth muscle cells. Interstitial cells of Cajal were studied by Kit immunofluorescence and transmission electron microscopy. Diabetic mice developed delayed gastric emptying, impaired electrical pacemaking, and reduced motor neurotransmission. Interstitial cells of Cajal were greatly reduced in the distal stomach, and the normally close associations between these cells and enteric nerve terminals were infrequent. Our observations suggest that damage to interstitial cells of Cajal may play a key role in the pathogenesis of diabetic gastropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis.

              Diabetic gastroparesis involves neuropathy, myopathy, and depletion of interstitial cells of Cajal (ICC), which may cause dysrhythmias and impaired neural control. Most murine gastric ICC depend on stem cell factor (SCF) signaling but can also be maintained with insulin or insulin-like growth factor-I (IGF-I). We investigated whether SCF could mediate the actions of insulin and IGF-I. Expression of insulin receptor, IGF-I receptor, and SCF was studied in gastric muscles and purified ICC by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). The effects of insulin/IGF-I deficiency on SCF, ICC, smooth muscle, and neurons were investigated in nonobese diabetic mice and organotypic cultures by immunohistochemistry, microarrays, and/or quantitative RT-PCR. ICC in organotypic cultures were also studied after immunoneutralization of endogenous SCF. Insulin and IGF-I receptors were detected in smooth-muscle cells and myenteric neurons but not in ICC. Cell-surface expression of SCF was only found in smooth-muscle cells. ICC depletion in diabetes was accompanied by smooth-muscle atrophy and reduced SCF, whereas neuron-specific gene expression remained unchanged. In organotypic cultures, prevention of ICC loss by insulin or IGF-I was paralleled by rescue of smooth-muscle cells and SCF expression but not of myenteric neurons. Immunoneutralization of endogenous SCF caused ICC depletion closely resembling that elicited by insulin/IGF-I deficiency. Reduced insulin/IGF-I signaling in diabetes may lead to ICC depletion and its consequences by causing smooth-muscle atrophy and reduced SCF production. Thus, myopathy may play a more central role in diabetic gastroenteropathies than previously recognized.
                Bookmark

                Author and article information

                Journal
                BMC Gastroenterol
                BMC Gastroenterology
                BioMed Central
                1471-230X
                2008
                30 May 2008
                : 8
                : 21
                Affiliations
                [1 ]Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
                [2 ]Enteric Neuromuscular Disorders and Pain Laboratory, Division of Gastroenterology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, USA
                [3 ]Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
                [4 ]Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester, MN, USA
                Article
                1471-230X-8-21
                10.1186/1471-230X-8-21
                2442096
                18513423
                731ed9dd-b335-44bd-a711-b87e3a75a70f
                Copyright © 2008 Pasricha et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 August 2007
                : 30 May 2008
                Categories
                Research Article

                Gastroenterology & Hepatology
                Gastroenterology & Hepatology

                Comments

                Comment on this article