24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HIV reservoirs as obstacles and opportunities for an HIV cure

      , ,
      Nature Immunology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The persistence of HIV reservoirs remains a formidable obstacle to achieving sustained virologic remission in HIV-infected individuals after antiretroviral therapy (ART) is discontinued, even if plasma viremia has been successfully suppressed for prolonged periods of time. Numerous approaches aimed at eradicating the virus, as well as maintaining its prolonged suppression in the absence of ART, have had little success. A better understanding of the pathophysiologic nature of HIV reservoirs and the impact of various interventions on their persistence is essential for the development of successful therapeutic strategies against HIV or the long-term control of infection. Here, we discuss the persistent HIV reservoir as a barrier to cure as well as the current therapeutic strategies aimed at eliminating or controlling the virus in the absence of ART.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.

          The capacity of HIV-1 to establish latent infection of CD4+ T cells may allow viral persistence despite immune responses and antiretroviral therapy. Measurements of infectious virus and viral RNA in plasma and of infectious virus, viral DNA and viral messenger RNA species in infected cells all suggest that HIV-1 replication continues throughout the course of infection. Uncertainty remains over what fraction of CD4+ T cells are infected and whether there are latent reservoirs for the virus. We show here that during the asymptomatic phase of infection there is an extremely low total body load of latently infected resting CD4+ T cells with replication-competent integrated provirus (<10(7) cells). The most prevalent form of HIV-1 DNA in resting and activated CD4+ T cells is a full-length, linear, unintegrated form that is not replication competent. The infection progresses even though at any given time in the lymphoid tissues integrated HIV-1 DNA is present in only a minute fraction of the susceptible populations, including resting and activated CD4+ T cells and macrophages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation.

            Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia, so life-long treatment is required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4(+) T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T lymphocytes (CTLs) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure.

              Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Immunology
                Nat Immunol
                Springer Science and Business Media LLC
                1529-2908
                1529-2916
                June 2015
                May 19 2015
                June 2015
                : 16
                : 6
                : 584-589
                Article
                10.1038/ni.3152
                25990814
                72ebc024-3a7d-45ee-9faf-7a97efd1b5a3
                © 2015

                Free to read

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article