31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth.

          Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A ferric-chelate reductase for iron uptake from soils.

            Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.

              Regulation of iron uptake is critical for plant survival. Although the activities responsible for reduction and transport of iron at the plant root surface have been described, the genes controlling these activities are largely unknown. We report the identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regulates iron uptake responses in Arabidopsis thaliana. Like the Fe(III) chelate reductase FRO2 and high affinity Fe(II) transporter IRT1, FIT1 mRNA is detected in the outer cell layers of the root and accumulates in response to iron deficiency. fit1 mutant plants are chlorotic and die as seedlings but can be rescued by the addition of supplemental iron, pointing to a defect in iron uptake. fit1 mutant plants accumulate less iron than wild-type plants in root and shoot tissues. Microarray analysis shows that expression of many (72 of 179) iron-regulated genes is dependent on FIT1. We demonstrate that FIT1 regulates FRO2 at the level of mRNA accumulation and IRT1 at the level of protein accumulation. We propose a new model for iron uptake in Arabidopsis where FRO2 and IRT1 are differentially regulated by FIT1.
                Bookmark

                Author and article information

                Journal
                New Phytologist
                New Phytol
                Wiley
                0028-646X
                1469-8137
                May 15 2019
                August 2019
                March 25 2019
                August 2019
                : 223
                : 3
                : 1433-1446
                Affiliations
                [1 ]BPMP Univ Montpellier CNRS INRA SupAgro 34060 Montpellier France
                [2 ]Departamento de Genética Molecular y Microbiología Pontificia Universidad Católica de Chile 8331150 Santiago Chile
                [3 ]Institut of Plant Sciences Paris‐Saclay (IPS2) UMR 9213/UMR1403 CNRS INRA Université Paris‐Sud Université d'Evry Université Paris‐Diderot Sorbonne Paris‐Cité Bâtiment 630 91405 Orsay France
                Article
                10.1111/nph.15753
                30773647
                72dcb017-533d-4304-8d17-c554d52f1f80
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article