15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Genetic Diversity of Pasteurella multocida Isolated from Diseased Poultry in Korea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Pasteurella multocida causes fowl cholera which is an economically important disease in poultry industries around the world. In this study, we analyzed the capsular genotype, lipopolysaccharide (LPS) genotype, virulence-associated genes (VAGs) patterns, antimicrobial resistance and genetic diversity in a total of 9 P. multocida isolates from poultry with fowl cholera between 2014 and 2019 in Korea. When combining the capsular types with the LPS genotypes, two isolates of the 9 isolates were A:L3, and the others were non-typeable (NT): L3. Of the 23 VAGs, all the isolates harbored ptfA, fimA, hsf-1, hsf-2, pfhA, exbB, exbD, tonB, hgbA, hgbB, fur, sodA, sodC, pmHAS, ompA, ompH, oma87, plpB, psl, and nanH, whereas toxA gene was not detected in any of the 9 isolates. In addition, among the 11 antimicrobials, most of the isolates except for one isolate resistant to florfenicol, exhibited susceptibility to all the antimicrobials. Multi-locus sequence typing (MLST) analysis revealed 5 different sequence types (ST): ST8, ST351, ST352, ST353, and ST368. The ST351, ST352, ST353, and ST368 were identified for the first time in this study, and ST352 and ST353 isolates were largely prevalent nationwide. These STs isolates should be monitored continuously because in some cases, ST352 and ST353 isolates demonstrated high mortality rates. Although only limited numbers of isolates have been analyzed, our findings provide overall characteristics and epidemiological information of the P. multocida strains recently prevalent in Korea.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The tad locus: postcards from the widespread colonization island.

          The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates.

            Genomic subtractive hybridization of closely related Pasteurella multocida isolates has generated clones useful in distinguishing hemorrhagic septicemia-causing type B strains from other P. multocida serotypes. Oligonucleotide primers designed during the sequencing of these clones have proved valuable in the development of PCR assays for rapid species- and type-specific detection of P. multocida and of type B:2 in particular. This study demonstrated that the primer pair designed from the sequence of the clone 6b (KTT72 and KTSP61) specifically amplified a DNA fragment from types B:2, B:5, and B:2,5 P. multocida and that the primers KMT1T7 and KMT1SP6 produced an amplification product unique to all P. multocida isolates analyzed. It was also shown that PCR amplification performed directly on bacterial colonies or cultures represents an extremely rapid, sensitive method of P. multocida identification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China.

              A total of 233 isolates of Pasteurella multocida were obtained from 2,912 cases of clinical respiratory disease in pigs in China, giving an isolation rate of 8.0%. Serogroup A P. multocida isolates were isolated from 92 cases (39.5%), and serogroup D isolates were isolated from 128 cases (54.9%); 12 isolates (5.2%) were untypeable. P. multocida was the fourth most frequent pathogenic bacterium recovered from the respiratory tract, after Streptococcus suis, Haemophilus parasuis, and Escherichia coli. All isolates were characterized for their susceptibilities to 20 antibiotics and the presence of 19 genes for virulence factors (VFs). The frequency of antimicrobial resistance among P. multocida isolates from swine in China was higher than that reported among P. multocida isolates from swine in from other countries, and 93.1% of the isolates showed multiple-drug resistance. There was a progressive increase in the rate of multiresistance to more than seven antibiotics, from 16.2% in 2003 to 62.8% in 2007. The resistance profiles suggested that cephalosporins, florfenicol, and fluoroquinolones were the drugs most likely to be active against P. multocida. Use of PCR showed that colonization factors (ptfA, fimA, and hsf-2), iron acquisition factors, sialidases (nanH), and outer membrane proteins occurred in most porcine strains. The VFs pfhA, tadD, toxA, and pmHAS were each present in <50% of strains. The various VFs exhibited distinctive associations with serogroups: concentrated in serogroup A, concentrated in serogroup D, or occurring jointly in serogroups A and D. These findings provide novel insights into the epidemiological characteristics of porcine P. multocida isolates and suggest that the potential threat of such multiresistant bacteria in food-producing animals should not be neglected.
                Bookmark

                Author and article information

                Journal
                rbca
                Brazilian Journal of Poultry Science
                Braz. J. Poult. Sci.
                Fundação APINCO de Ciência e Tecnologia Avícolas (Campinas, SP, Brazil )
                1516-635X
                1806-9061
                2021
                : 23
                : 2
                : eRBCA-2020-1390
                Affiliations
                [2] Gimcheon-si Gyeongsangbuk-do orgnameAnimal and Plant Quarantine Agency orgdiv1Animal Disease Diagnostic Division Republic of Korea
                [1] Gimcheon-si Gyeongsangbuk-do orgnameAnimal and Plant Quarantine Agency orgdiv1Avian Disease Research Division Republic of Korea
                Article
                S1516-635X2021000200306 S1516-635X(21)02300200306
                10.1590/1806-9061-2020-1390
                72d669d2-8bf4-41f1-9f59-3967d39f6808

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 28 January 2021
                : 10 September 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 39, Pages: 0
                Product

                SciELO Brazil

                Categories
                Original Articles

                Pasteurella multocida,virulence-associated gene (VAG),Antimicrobial susceptibility test,fowl cholera,multi-locus sequence type (MLST)

                Comments

                Comment on this article