3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      G Protein-Coupled Receptors: Functional and Mechanistic Insights Through Altered Gene Expression

      1 , 1
      Physiological Reviews
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.

          We have produced a mouse strain in which the deletion of the NMDAR1 gene is restricted to the CA1 pyramidal cells of the hippocampus by using a new and general method that allows CA1-restricted gene knockout. The mutant mice grow into adulthood without obvious abnormalities. Adult mice lack NMDA receptor-mediated synaptic currents and long-term potentiation in the CA1 synapses and exhibit impaired spatial memory but unimpaired nonspatial learning. Our results strongly suggest that activity-dependent modifications of CA1 synapses, mediated by NMDA receptors, play an essential role in the acquisition of spatial memories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subregion- and cell type-restricted gene knockout in mouse brain.

            Using the phage P1-derived Cre/loxP recombination system, we have developed a method to create mice in which the deletion (knockout) of virtually any gene of interest is restricted to a subregion or a specific cell type in the brain such as the pyramidal cells of the hippocampal CA1 region. The Cre/loxP recombination-based gene deletion appears to require a certain level of Cre protein expression. The brain subregional restricted gene knockout should allow a more precise analysis of the impact of a gene mutation on animal behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.

              Despite tremendous efforts in the search for safe, efficacious and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Opioids exert their pharmacological actions through three opioid-receptor classes, mu, delta and kappa, whose genes have been cloned. Genetic approaches are now available to delineate the contribution of each receptor in opioid function in vivo. Here we disrupt the mu-opioid-receptor gene in mice by homologous recombination and find that there are no overt behavioural abnormalities or major compensatory changes within the opioid system in these animals. Investigation of the behavioural effects of morphine reveals that a lack of mu receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. We observed no behavioural responses related to delta- or kappa-receptor activation with morphine, although these receptors are present and bind opioid ligands. We conclude that the mu-opioid-receptor gene product is the molecular target of morphine in vivo and that it is a mandatory component of the opioid system for morphine action.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                January 1998
                January 1998
                : 78
                : 1
                : 35-52
                Affiliations
                [1 ]Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California
                Article
                10.1152/physrev.1998.78.1.35
                72a228a5-5dc3-47f1-a0d9-f164f4a53ef9
                © 1998
                History

                Comments

                Comment on this article