19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiome Modulation—Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant-associated microorganisms are involved in important functions related to growth, performance and health of their hosts. Understanding their modes of action is important for the design of promising microbial inoculants for sustainable agriculture. Plant-associated microorganisms are able to interact with their hosts and often exert specific functions toward potential pathogens; the underlying in vitro interactions are well studied. In contrast, in situ effects of inoculants, and especially their impact on the plant indigenous microbiome was mostly neglected so far. Recently, microbiome research has revolutionized our understanding of plants as coevolved holobionts but also of indigenous microbiome-inoculant interactions. Here we disentangle the effects of microbial inoculants on the indigenous plant microbiome and point out the following types of plant microbiome modulations: (i) transient microbiome shifts, (ii) stabilization or increase of microbial diversity, (iii) stabilization or increase of plant microbiome evenness, (iv) restoration of a dysbiosis/compensation or reduction of a pathogen-induced shift, (v) targeted shifts toward plant beneficial members of the indigenous microbiota, and (vi) suppression of potential pathogens. Therefore, we suggest microbiome modulations as novel and efficient mode of action for microbial inoculants that can also be mediated via the plant.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant–microbiome interactions: from community assembly to plant health

            Healthy plants host diverse but taxonomically structured communities of microorganisms, the plant microbiota, that colonize every accessible plant tissue. Plant-associated microbiomes confer fitness advantages to the plant host, including growth promotion, nutrient uptake, stress tolerance and resistance to pathogens. In this Review, we explore how plant microbiome research has unravelled the complex network of genetic, biochemical, physical and metabolic interactions among the plant, the associated microbial communities and the environment. We also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits, such as nutrient acquisition and plant health, in addition to highlighting knowledge gaps and future directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Going back to the roots: the microbial ecology of the rhizosphere.

              The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                08 April 2021
                2021
                : 12
                : 650610
                Affiliations
                [1] 1Institute of Environmental Biotechnology, Graz University of Technology , Graz, Austria
                [2] 2Julius Kühn Institute (JKI) Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics , Braunschweig, Germany
                Author notes

                Edited by: Yong Wang, Guizhou University, China

                Reviewed by: Sara Borin, University of Milan, Italy; Jay Prakash Verma, Banaras Hindu University, India

                *Correspondence: Peter Kusstatscher, peter.kusstatscher@ 123456tugraz.at

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.650610
                8060476
                33897663
                728afd51-1127-4653-b361-2b7e87e8dab0
                Copyright © 2021 Berg, Kusstatscher, Abdelfattah, Cernava and Smalla.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 January 2021
                : 19 March 2021
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 105, Pages: 12, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                holobiont,microbial diversity,healthy plant microbiome,mode of action,microbiome shift

                Comments

                Comment on this article