Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic architecture: the shape of the genetic contribution to human traits and disease

      , , , ,
      Nature Reviews Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic architecture describes the characteristics of genetic variation that are responsible for heritable phenotypic variability. It depends on the number of genetic variants affecting a trait, their frequencies in the population, the magnitude of their effects and their interactions with each other and the environment. Defining the genetic architecture of a complex trait or disease is central to the scientific and clinical goals of human genetics, which are to understand disease aetiology and aid in disease screening, diagnosis, prognosis and therapy. Recent technological advances have enabled genome-wide association studies and emerging next-generation sequencing studies to begin to decipher the nature of the heritable contribution to traits and disease. Here, we describe the types of genetic architecture that have been observed, how architecture can be measured and why an improved understanding of genetic architecture is central to future advances in the field.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies novel risk loci for type 2 diabetes.

          Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

            To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural mechanism for statin inhibition of HMG-CoA reductase.

              HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature
                1471-0056
                1471-0064
                December 11 2017
                December 11 2017
                :
                :
                Article
                10.1038/nrg.2017.101
                29225335
                7262ccd2-21a2-4c5d-bb2e-19e2e3e1b889
                © 2017
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,680

                Cited by156

                Most referenced authors5,929