5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Many‐Body Complexes in 2D Semiconductors

      1 , 2 , 3 , 2 , 3 , 1 , 4
      Advanced Materials
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging photoluminescence in monolayer MoS2.

            Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

              The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                January 2019
                August 20 2018
                January 2019
                : 31
                : 2
                : 1706945
                Affiliations
                [1 ]Collaborative Innovation Center for Optoelectronic Science and Technology Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
                [2 ]College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
                [3 ]Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
                [4 ]Research School of Engineering The Australian National University Canberra ACT 2601 Australia
                Article
                10.1002/adma.201706945
                30129218
                722d9871-7f5f-49cc-8358-049ed7e7c48c
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article