14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Saponin-Induced Shifts in the Rumen Microbiome and Metabolome of Young Cattle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to explore the effects of saponins on the rumen microbiota and the ruminal metabolome. Alfalfa hay (AH) and soybean hulls (SH) were used as fiber sources for the control diets. The AH and SH diets were supplemented with tea saponins resulting in two additional diets named AHS and SHS, respectively. These 4 diets were fed to 24 young male Holstein cattle ( n = 6 per diet). After 28 days of feeding, the rumen fluid from these cattle was collected using an oral stomach tube. Illumina MiSeq sequencing and ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) were used to investigate the changes in the ruminal microbes and their metabolites. The relative abundance of Prevotellaceae_YAB2003 increased, while Ruminococcaceae_NK4A214 and Lachnospiraceae_NK3A20 decreased in SHS and AHS compared to SH and AHS, respectively. Feeding SHS resulted in higher ruminal concentrations of squalene, lanosterol, 3-phenylpropanoic acid, and citrulline compared to SH. The different microbial genes predicted by Tax4Fun were involved in amino sugar and nucleotide sugar metabolism. The pathways of arginine and proline metabolism, purine metabolism, and pyrimidine metabolism were enriched by different metabolites. Moreover, in the SH group, a positive correlation was observed between Prevotella_1 ( Bacteroidetes), Prevotellaceae_YAB2003 ( Bacteroidetes), and Christensenellaceae_R.7 ( Firmicutes), and the metabolites, including citrulline, lanosterol, and squalene. The increased abundances of Prevotella_1, Ruminococcaceae_UCG.002, and Prevotellaceae_YAB2003 might result in increased fiber digestion and nutrient utilization but nutrient digestion was not measured in the current study. In summary, saponins have the ability to modulate the ruminal microbial community and ruminal metabolites and thus affect the rumen environment. However, the response seems to be dependent on the composition of the basal diet. This study provides a comprehensive overview of the microbial and biochemical changes in the rumen of cattle fed saponins.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting intake and digestibility using mathematical models of ruminal function.

            D Mertens (1987)
            Intake and digestibility of feeds by ruminants are influenced by characteristics of the feed, animal and feeding situation. Integration of these characteristics in mathematical models is critical to future progress in forage evaluation and optimal formulation of diets for ruminants. The physiological and physical theories of intake regulation can be described by simple mathematical equations. These equations indicate that intake is a linear function of animal characteristics, such as body weight and production level, and a reciprocal function of feed characteristics, such as fill effect and energy content. Theoretical equations were developed to predict intake when the neutral detergent fiber and energy content of the diet and the energy requirements of the animal are known. The theoretical model also can be used to predict the maximum intake that will maintain a given level of animal production by solving the physiological and physical intake equations at their intersection. Psychogenic intake regulation, which is related to the animal's behavioral response to factors not related to physiological or physical characteristics, can be described mathematically as a multiplier. Digestibility can be predicted by summing the contents of ideal nutritive entities in feeds, which have true digestibilities near 100%, subtracting their associated endogenous losses and adding the variable digestible fiber content. Steady-state models indicate fractional rates of digestion and passage can be used to define ideal nutritive entities and predict digestibility over a range of kinetic characteristics. The steady-state solutions are particularly useful in understanding and predicting the depression in digestibility associated with changes in rates of passage at high levels of feed intake.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal microbiota, diet and health.

              The human intestine is colonised by 10¹³ to 10¹⁴ micro-organisms, the vast majority of which belong to the phyla Firmicutes and Bacteroidetes. Although highly stable over time, the composition and activities of the microbiota may be influenced by a number of factors including age, diet and antibiotic treatment. Although perturbations in the composition or functions of the microbiota are linked to inflammatory and metabolic disorders (e.g. inflammatory bowel diseases, irritable bowel syndrome and obesity), it is unclear at this point whether these changes are a symptom of the disease or a contributing factor. A better knowledge of the mechanisms through which changes in microbiota composition (dysbiosis) promote disease states is needed to improve our understanding of the causal relationship between the gut microbiota and disease. While evidence of the preventive and therapeutic effects of probiotic strains on diarrhoeal illness and other intestinal conditions is promising, the exact mechanisms of the beneficial effects are not fully understood. Recent studies have raised the question of whether non-viable probiotic strains can confer health benefits on the host by influencing the immune system. As the potential health effect of these non-viable bacteria depends on whether the mechanism of this effect is dependent on viability, future research needs to consider each probiotic strain on a case-by-case basis. The present review provides a comprehensive, updated overview of the human gut microbiota, the factors influencing its composition and the role of probiotics as a therapeutic modality in the treatment and prevention of diseases and/or restoration of human health.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                28 February 2019
                2019
                : 10
                : 356
                Affiliations
                [1] 1Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing, China
                [2] 2College of Animal Science and Technology, China Agricultural University , Beijing, China
                Author notes

                Edited by: Amlan Kumar Patra, West Bengal University of Animal and Fishery Sciences, India

                Reviewed by: Martin Hünerberg, University of Göttingen, Germany; Charles James Newbold, Scotland’s Rural College, United Kingdom; Xianghui Zhao, Jiangxi Agricultural University, China

                *Correspondence: Yan Tu, tuyan@ 123456caas.cn

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00356
                6403146
                30873143
                71e01d71-6be8-45a9-9fad-70fac6c72a4a
                Copyright © 2019 Wang, Ma, Diao and Tu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 June 2018
                : 11 February 2019
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 50, Pages: 14, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                16s rrna gene,cattle,metabolomics,microbiome,rumen,saponins,uhplc-qtof-ms
                Microbiology & Virology
                16s rrna gene, cattle, metabolomics, microbiome, rumen, saponins, uhplc-qtof-ms

                Comments

                Comment on this article