10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dietary Clostridium autoethanogenum protein modulates intestinal absorption, antioxidant status, and immune response in GIFT ( Oreochromis niloticus ) juveniles

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of nrf2 in oxidative stress and toxicity.

              Qiang Ma (2013)
              Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body's needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol-based redox signaling. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element-dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense.
                Bookmark

                Author and article information

                Contributors
                Journal
                Aquaculture Research
                Aquaculture Research
                Wiley
                1355-557X
                1365-2109
                November 2021
                July 10 2021
                November 2021
                : 52
                : 11
                : 5787-5799
                Affiliations
                [1 ]Wuxi Fisheries CollegeNanjing Agricultural University Wuxi China
                [2 ]Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology Freshwater Fisheries Research Center (FFRC) Chinese Academy of Fishery Sciences (CAFS) Wuxi China
                Article
                10.1111/are.15454
                71d00f4e-b96b-49bc-bd81-c931660d536c
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article