5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From Elements to Function: Toward Unifying Ecological Stoichiometry and Trait-Based Ecology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            N : P ratios in terrestrial plants: variation and functional significance

            Nitrogen (N) and phosphorus (P) availability limit plant growth in most terrestrial ecosystems. This review examines how variation in the relative availability of N and P, as reflected by N : P ratios of plant biomass, influences vegetation composition and functioning. Plastic responses of plants to N and P supply cause up to 50-fold variation in biomass N : P ratios, associated with differences in root allocation, nutrient uptake, biomass turnover and reproductive output. Optimal N : P ratios - those of plants whose growth is equally limited by N and P - depend on species, growth rate, plant age and plant parts. At vegetation level, N : P ratios <10 and >20 often (not always) correspond to N- and P-limited biomass production, as shown by short-term fertilization experiments; however long-term effects of fertilization or effects on individual species can be different. N : P ratios are on average higher in graminoids than in forbs, and in stress-tolerant species compared with ruderals; they correlate negatively with the maximal relative growth rates of species and with their N-indicator values. At vegetation level, N : P ratios often correlate negatively with biomass production; high N : P ratios promote graminoids and stress tolerators relative to other species, whereas relationships with species richness are not consistent. N : P ratios are influenced by global change, increased atmospheric N deposition, and conservation managment. Contents Summary 243 I Introduction 244 II Variability of N : P ratios in response to nutrient  supply 244 III Critical N : P ratios as indicators of nutrient  limitation 248 IV Interspecific variation in N : P ratios 252 V Vegetation properties in relation to N : P ratios 255 VI Implications of N : P ratios for human impacts  on ecosystems 258 VII Conclusions 259 Acknowledgements 259 References 260.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis

                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                May 08 2017
                May 08 2017
                : 5
                Article
                10.3389/fenvs.2017.00018
                71c6516d-3932-4296-afce-211c26e4d6d5
                © 2017
                History

                Comments

                Comment on this article