Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Allosteric communication between protomers of dopamine Class A GPCR dimers modulates activation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major obstacle to understanding the functional importance of dimerization between Class A G protein-coupled receptors (GPCRs) has been the methodological limitation in achieving control of the identity of the components comprising the signaling unit. We have developed a functional complementation assay that enables such control and illustrate it for the human dopamine D2 receptor. The minimal signaling unit, two receptors and a single G protein, is maximally activated by agonist binding to a single protomer, which suggests an asymmetrical activated dimer. Inverse agonist binding to the second protomer enhances signaling, whereas agonist binding to the second protomer blunts signaling. Ligand-independent constitutive activation of the second protomer also inhibits signaling. Thus, GPCR dimer function can be modulated by the activity state of the second protomer, which for a heterodimer may be altered in pathological states. Our novel methodology also makes possible the characterization of signaling from a defined heterodimer unit.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of opsin in its G-protein-interacting conformation.

          Opsin, the ligand-free form of the G-protein-coupled receptor rhodopsin, at low pH adopts a conformationally distinct, active G-protein-binding state known as Ops*. A synthetic peptide derived from the main binding site of the heterotrimeric G protein-the carboxy terminus of the alpha-subunit (GalphaCT)-stabilizes Ops*. Here we present the 3.2 A crystal structure of the bovine Ops*-GalphaCT peptide complex. GalphaCT binds to a site in opsin that is opened by an outward tilt of transmembrane helix (TM) 6, a pairing of TM5 and TM6, and a restructured TM7-helix 8 kink. Contacts along the inner surface of TM5 and TM6 induce an alpha-helical conformation in GalphaCT with a C-terminal reverse turn. Main-chain carbonyl groups in the reverse turn constitute the centre of a hydrogen-bonded network, which links the two receptor regions containing the conserved E(D)RY and NPxxY(x)(5,6)F motifs. On the basis of the Ops*-GalphaCT structure and known conformational changes in Galpha, we discuss signal transfer from the receptor to the G protein nucleotide-binding site.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha.

            Agonist-bound receptors activate heterotrimeric (alpha beta gamma) G proteins by catalysing replacement of GDP bound to the alpha-subunit by GTP. mutations in the C terminus of the alpha-subunit, its covalent modification by pertussis toxin-catalysed ribosylation of ADP, peptide-specific antibodies directed against it, and peptides mimicking C-terminal sequences, all inhibit receptor-mediated activation of G proteins. The logical prediction--that specific amino-acid residues at the C-termini of alpha-subunits can determine the abilities of individual G proteins to discriminate among specific subsets of receptors--has so far not been tested experimentally. Different hormone receptors specifically activate Gq or Gi, whose alpha-subunits (alpha q or alpha i) stimulate phosphatidylinositol-specific phospholipase C or inhibit adenylyl cyclase, respectively. Here we replace C-terminal amino acids of alpha q with the corresponding residues of alpha i2 to create alpha q/alpha i2 chimaeras that can mediate stimulation of phospholipase C by receptors otherwise coupled exclusively to Gi. A minimum of three alpha i2 amino acids, including a glycine three residues from the C terminus, suffices to switch the receptor specificity of the alpha q/alpha i2 chimaeras. We propose that a C-terminal turn, centered on this glycine, plays an important part in specifying receptor interactions of G proteins in the Gi/Go/Gz family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors.

              G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the animal genome. These receptors can be classified into several groups based on the sequence similarity of their common heptahelical domain. The family 3 (or C) GPCRs are receptors for the main neurotransmitters glutamate and gamma-aminobutyric acid, for Ca(2+), for sweet and amino acid taste compounds, and for some pheromone molecules, as well as for odorants in fish. Although none of these family 3 receptors have been found in plants, members have been identified in ancient organisms, such as slime molds (Dictyostelium) and sponges. Like any other GPCRs, family 3 receptors possess a transmembrane heptahelical domain responsible for G-protein activation. However, most of these identified receptors also possess a large extracellular domain that is responsible for ligand recognition, is structurally similar to bacterial periplasmic proteins involved in the transport of small molecules, and is called a Venus Flytrap module. The recent resolution of the structure of this binding domain in one of these receptors, the metabotropic glutamate 1 receptor, together with the recent demonstration that these receptors are dimers, revealed a unique mechanism of activation for these GPCRs. Such data open new possibilities in the development of drugs aimed at modulating these receptors, and raise a number of interesting questions on the activation mechanism of the other GPCRs.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nature chemical biology
                1552-4450
                1552-4469
                13 May 2009
                2 August 2009
                September 2009
                1 March 2010
                : 5
                : 9
                : 688-695
                Affiliations
                [1 ]Center for Molecular Recognition, 630 West 168 th Street, New York, NY 10032, USA
                [2 ]Department of Psychiatry, Columbia University College of Physicians and Surgeons, 630 West 168 th Street, New York, NY 10032, USA
                [3 ]Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032 USA
                [4 ]Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10065, USA.
                [5 ]The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10065, USA.
                [6 ]Department of Pharmacology, Columbia University College of Physicians and Surgeons, 630 West 168 th Street, New York, NY 10032
                Author notes
                Correspondence should be addressed to J.A.J ( jaj2@ 123456columbia.edu )
                Article
                nihpa113943
                10.1038/nchembio.199
                2817978
                19648932
                71ab5cc3-4953-49ca-a280-e5392dc5a1ed
                History
                Funding
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R01 MH054137-13 ||MH
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R01 MH054137-12 ||MH
                Funded by: National Institute of Mental Health : NIMH
                Award ID: R01 MH054137-11 ||MH
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content240

                Cited by72

                Most referenced authors651