6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin.

      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. Here we report the 1.60 A crystal structure of the SK channel CaMBD/Ca2+/CaM complex. The CaMBD forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. As only the CaM N-lobe has bound Ca2+, the structure provides a view of both calcium-dependent and -independent CaM/protein interactions. Together with biochemical data, the structure suggests a possible gating mechanism for the SK channel.

          Related collections

          Author and article information

          Journal
          11323678
          10.1038/35074145

          Comments

          Comment on this article

          scite_