12
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiological identification and analysis of waterfowl livers collected from backyard farms in southern China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In total, 985 livers were collected from 275 backyard waterfowl farms distributed in seven provinces of southern China. The virus that was most commonly isolated was avian influenza virus, with a 12.1% positivity rate. Of the other positive samples, 10.6% tested positive for avian Tembusu virus, 6.8% for duck hepatitis A virus, 3.8% for duck plague virus, 3.4% for Muscovy duck parvovirus, 3.1% for goose parvovirus, 1.0% for mycoplasma and 0.9% for respiratory enteric orphan virus. The bacterium that was most commonly isolated was Escherichia coli, with a 47.1% positivity rate. This survey suggests that backyard waterfowl in southern China could be an important vector for the storage, variation, and transmission of various pathogens.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China.

            Constant surveillance of live poultry markets (LPMs) is currently the best way to predict and identify emerging avian influenza viruses (AIVs) that pose a potential threat to public health. Through surveillance of LPMs from 16 provinces and municipalities in China during 2014-2016, we identified 3,174 AIV-positive samples and isolated and sequenced 1,135 AIVs covering 31 subtypes. Our analysis shows that H5N6 has replaced H5N1 as one of the dominant AIV subtypes in southern China, especially in ducks. Phylogenetic analysis reveals that H5N6 arose from reassortments of H5 and H6N6 viruses, with the hemagglutinin and neuraminidase combinations being strongly lineage specific. H5N6 viruses constitute at least 34 distinct genotypes derived from various evolutionary pathways. Notably, genotype G1.2 virus, with internal genes from the chicken H9N2/H7N9 gene pool, was responsible for at least five human H5N6 infections. Our findings highlight H5N6 AIVs as potential threats to public health and agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and subtyping of avian influenza viruses by reverse transcription-PCR.

              Avian influenza viruses have 15 different hemagglutinin (HA) subtypes (H1-H15). We report a procedure for the identification and HA-subtyping of avian influenza virus by reverse transcription-PCR (RT-PCR). The avian influenza virus is identified by RT-PCR using a set of primers specific to the nucleoprotein (NP) gene of avian influenza virus. The HA-subtypes of avian influenza virus were determined by running simultaneously 15 RT-PCR reactions, each using a set of primers specific to one HA-subtype. For a single virus strain or isolate, only one of the 15 RT-PCR reactions will give a product of expected size, and thus the HA-subtype of the virus is determined. The result of HA-subtyping was then confirmed by sequence analysis of the PCR product. A total of 80 strains or isolates of avian influenza viruses were subtyped by this RT-PCR procedure, and the result of RT-PCR gave an excellent (100%) correlation with the result of the conventional serological method. The RT-PCR procedure we developed is rapid and sensitive, and could be used for the identification and HA-subtyping of avian influenza virus in organ homogenates.
                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                02 February 2018
                April 2018
                : 80
                : 4
                : 667-671
                Affiliations
                [1) ]Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
                Author notes
                [* ]Correspondence to: Huang, Y.: huangyu_815@ 123456163.com
                Article
                17-0452
                10.1292/jvms.17-0452
                5938198
                29398671
                716ab736-de51-4c75-92dd-63152c179a76
                ©2018 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 01 September 2017
                : 14 January 2018
                Categories
                Avian Pathology
                Note

                backyard farms,liver,microbiological identification,waterfowl

                Comments

                Comment on this article