Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NicheMapR - an R package for biophysical modelling: the microclimate model

      ,
      Ecography
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          A high-resolution data set of surface climate over global land areas

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.

              Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.
                Bookmark

                Author and article information

                Journal
                Ecography
                Ecography
                Wiley-Blackwell
                09067590
                May 2017
                May 17 2017
                : 40
                : 5
                : 664-674
                Article
                10.1111/ecog.02360
                714a60a4-7ce6-4535-8d46-d4a973592533
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article