35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Herpes Simplex Virus 1 Counteracts Tetherin Restriction via Its Virion Host Shutoff Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interferon-inducible membrane protein tetherin (Bst-2, or CD317) is an antiviral factor that inhibits enveloped virus release by cross-linking newly formed virus particles to the producing cell. The majority of viruses that are sensitive to tetherin restriction appear to be those that acquire their envelopes at the plasma membrane, although many viruses, including herpesviruses, envelope at intracellular membranes, and the effect of tetherin on such viruses has been less well studied. We investigated the tetherin sensitivity and possible countermeasures of herpes simplex virus 1 (HSV-1). We found that overexpression of tetherin inhibits HSV-1 release and that HSV-1 efficiently depletes tetherin from infected cells. We further show that the virion host shutoff protein (Vhs) is important for depletion of tetherin mRNA and protein and that removal of tetherin compensates for defects in replication and release of a Vhs-null virus. Vhs is known to be important for HSV-1 to evade the innate immune response in vivo. Taken together, our data suggest that tetherin has antiviral activity toward HSV-1 and that the removal of tetherin by Vhs is important for the efficient replication and dissemination of HSV-1.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tetherin inhibits HIV-1 release by directly tethering virions to cells.

            Tetherin is an interferon-induced protein whose expression blocks the release of HIV-1 and other enveloped viral particles. The underlying mechanism by which tetherin functions and whether it directly or indirectly causes virion retention are unknown. Here, we elucidate the mechanism by which tetherin exerts its antiviral activity. We demonstrate, through mutational analyses and domain replacement experiments, that tetherin configuration rather than primary sequence is critical for antiviral activity. These findings allowed the design of a completely artificial protein, lacking sequence homology with native tetherin, that nevertheless mimicked its antiviral activity. We further show that tetherin is incorporated into HIV-1 particles as a parallel homodimer using either of its two membrane anchors. These results indicate that tetherin functions autonomously and directly and that infiltration of virion envelopes by one or both of tetherin's membrane anchors is necessary, and likely sufficient, to tether enveloped virus particles that bud through the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology.

              An expression screen of a rat cDNA library for sequences encoding Golgi-localized integral membrane proteins identified a protein with an apparent novel topology, i.e. with both an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. Our data are consistent with this. Thus, the protein would have a topology that, in mammalian cells, is shared only by a minor, but pathologically important, topological isoform of the prion protein (PrP). The human orthologue of this protein has been described previously (BST-2 or HM1.24 antigen) as a cell surface molecule that appears to be involved in early pre-B-cell development and which is present at elevated levels at the surface of myeloma cells. We show that rat BST-2/HM1.24 has both a cell surface and an intracellular (juxtanuclear) location and is efficiently internalized from the cell surface. We also show that the cell surface pool of BST-2/HM1.24 is predominantly present in the apical plasma membrane of polarized cells. The fact that rat BST-2/HM1.24 apparently possesses a GPI anchor led us to speculate that it might exist in cholesterol-rich lipid microdomains (lipid rafts) at the plasma membrane. Data from several experiments are consistent with this localization. We present a model in which BST-2/HM1.24 serves to link adjacent lipid rafts within the plasma membrane.
                Bookmark

                Author and article information

                Journal
                J Virol
                J. Virol
                jvi
                jvi
                JVI
                Journal of Virology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0022-538X
                1098-5514
                December 2013
                15 December 2013
                : 87
                : 24
                : 13115-13123
                Affiliations
                Department of Pathology, University of Cambridge, Cambridge, United Kingdom [a ]
                Department of Biochemistry, University of Bristol, Bristol, United Kingdom [b ]
                Author notes
                Address correspondence to Colin Crump, cmc56@ 123456cam.ac.uk .
                Article
                02167-13
                10.1128/JVI.02167-13
                3838292
                24067977
                7131f24f-e316-4eec-9cae-f5790bbc9afb
                Copyright © 2013 Zenner et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 5 August 2013
                : 23 August 2013
                Categories
                Cellular Response to Infection

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article