10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Marine Anthraquinones: Pharmacological and Toxicological Issues

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

          Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell death: a review of the major forms of apoptosis, necrosis and autophagy

            Cell death was once believed to be the result of one of two distinct processes, apoptosis (also known as programmed cell death) or necrosis (uncontrolled cell death); in recent years, however, several other forms of cell death have been discovered highlighting that a cell can die via a number of differing pathways. Apoptosis is characterised by a number of characteristic morphological changes in the structure of the cell, together with a number of enzyme-dependent biochemical processes. The result being the clearance of cells from the body, with minimal damage to surrounding tissues. Necrosis, however, is generally characterised to be the uncontrolled death of the cell, usually following a severe insult, resulting in spillage of the contents of the cell into surrounding tissues and subsequent damage thereof. Failure of apoptosis and the resultant accumulation of damaged cells in the body can result in various forms of cancer. An understanding of the pathways is therefore important in developing efficient chemotherapeutics. It has recently become clear that there exists a number of subtypes of apoptosis and that there is an overlap between apoptosis, necrosis and autophagy. The goal of this review is to provide a general overview of the current knowledge relating to the various forms of cell death, including apoptosis, necrosis, oncosis, pyroptosis and autophagy. This will provide researchers with a summary of the major forms of cell death and allow them to compare and contrast between them.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              gammaH2AX: a sensitive molecular marker of DNA damage and repair.

              Phosphorylation of the Ser-139 residue of the histone variant H2AX, forming gammaH2AX, is an early cellular response to the induction of DNA double-strand breaks. Detection of this phosphorylation event has emerged as a highly specific and sensitive molecular marker for monitoring DNA damage initiation and resolution. Further, analysis of gammaH2AX foci has numerous other applications including, but not limited to, cancer and aging research. Quantitation of gammaH2AX foci has also been applied as a useful tool for the evaluation of the efficacy of various developmental drugs, particularly, radiation modifying compounds. This review focuses on the current status of gammaH2AX as a marker of DNA damage and repair in the context of ionizing radiation. Although the emphasis is on gamma-radiation-induced gammaH2AX foci, the effects of other genotoxic insults including exposure to ultraviolet rays, oxidative stress and chemical agents are also discussed.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                13 May 2021
                May 2021
                : 19
                : 5
                : 272
                Affiliations
                Department for Life Quality Studies, Alma Mater Studiorum, Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; giulia.greco9@ 123456unibo.it (G.G.); eleonora.turrini@ 123456unibo.it (E.T.); elena.catanzaro2@ 123456unibo.it (E.C.)
                Author notes
                [* ]Correspondence: carmela.fimognari@ 123456unibo.it ; Tel.: +39-05-4143-4658
                Author information
                https://orcid.org/0000-0001-8174-9977
                https://orcid.org/0000-0003-4743-1126
                https://orcid.org/0000-0001-7699-3414
                https://orcid.org/0000-0002-2461-8214
                Article
                marinedrugs-19-00272
                10.3390/md19050272
                8152984
                34068184
                71273817-697b-43bb-80c1-41e147cef684
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2021
                : 11 May 2021
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                anthraquinones,marine organisms,fungi,in vitro studies,in vivo studies,cytotoxicity,anticancer mechanisms,genotoxicity

                Comments

                Comment on this article