4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A rhodamine based biocompatible chemosensor for Al 3+, Cr 3+ and Fe 3+ ions: extraordinary fluorescence enhancement and a precursor for future chemosensors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fluorescence intensity of a biocompatible and highly sensitive rhodamine derivative increases by several hundred fold in the presence of Al 3+, Cr 3+ and Fe 3+ ions.

          Abstract

          A rhodamine based chemosensor, 3-(((2-(3′,6′-bis(ethylamino)-2′,7′-dimethyl-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)ethyl)imino)methyl)-2-hydroxy-5-methylbenzaldehyde (HL-CHO), has been developed for the detection of Al 3+, Cr 3+ and Fe 3+ ions. The absorbance of HL-CHO at 528 nm increases significantly in HEPES buffer in methanol : water (9 : 1, v/v) (pH 7.4) in the presence of Al 3+, Cr 3+ and Fe 3+ ions with the alteration of solution color from colorless to pink. The fluorescence intensity of the probe at 550 nm enhances by 1465, 588 and 800 fold in the presence of Al 3+, Cr 3+ and Fe 3+ ions, respectively. To the best of our knowledge, this huge increase in fluorescence intensity with Al 3+ and Cr 3+ has not been observed for other rhodamine based chemosensing systems. The weak fluorescence and no coloration of the probe are due to the existence of a spirolactam ring. The trivalent cations induce the opening of the spirolactam ring and consequently change the color and the fluorescence intensity followed by the 1 : 1 complex formation with HL-CHO which are evident from Job's analysis, ESI mass spectral analysis and elemental analysis. The quantum yield and lifetime of HL-CHO have increased considerably in the presence of the trivalent cations. The high sensitivity of the probe towards all the cations is evident from the nM order of LOD values. This has been used in living cell imaging studies with the human neuroblastoma SH-SY5Y cell line. Having appended –CHO groups for Schiff-base condensation with other amines, HL-CHO could be a potential precursor for future chemosensors.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

          A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluorescent chemosensors: the past, present and future.

            Fluorescent chemosensors for ions and neutral analytes have been widely applied in many diverse fields such as biology, physiology, pharmacology, and environmental sciences. The field of fluorescent chemosensors has been in existence for about 150 years. In this time, a large range of fluorescent chemosensors have been established for the detection of biologically and/or environmentally important species. Despite the progress made in this field, several problems and challenges still exist. This tutorial review introduces the history and provides a general overview of the development in the research of fluorescent sensors, often referred to as chemosensors. This will be achieved by highlighting some pioneering and representative works from about 40 groups in the world that have made substantial contributions to this field. The basic principles involved in the design of chemosensors for specific analytes, problems and challenges in the field as well as possible future research directions are covered. The application of chemosensors in various established and emerging biotechnologies, is very bright.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease.

              Iron is necessary for life, but can also cause cell death. Accordingly, cells evolved a robust, tightly regulated suite of genes for maintaining iron homeostasis. Previous mechanistic studies on iron homeostasis have granted insight into the role of iron in human health and disease. We highlight new regulators of iron metabolism, including iron-trafficking proteins [solute carrier family 39, SLC39, also known as ZRT/IRT-like protein, ZIP; and poly-(rC)-binding protein, PCBP] and a cargo receptor (NCOA4) that is crucial for release of ferritin-bound iron. We also discuss emerging roles of iron in apoptosis and a novel iron-dependent cell death pathway termed 'ferroptosis', the dysregulation of iron metabolism in human pathologies, and the use of iron chelators in cancer therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                ICHBD9
                Dalton Transactions
                Dalton Trans.
                Royal Society of Chemistry (RSC)
                1477-9226
                1477-9234
                December 3 2019
                2019
                : 48
                : 47
                : 17594-17604
                Affiliations
                [1 ]Department of Chemistry
                [2 ]Jadavpur University
                [3 ]Kolkata 700032
                [4 ]India
                [5 ]Special Centre for Molecular Medicine
                [6 ]Jawaharlal Nehru University
                [7 ]New Delhi 110067
                [8 ]Department of Ecological Studies and International Centre for Ecological Engineering (ICEE)
                [9 ]University of Kalyani
                [10 ]Nadia 741235
                Article
                10.1039/C9DT03833G
                7114a8de-c0c1-4a6e-aba5-55449e5568d3
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content297

                Cited by16

                Most referenced authors1,190