13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex

      research-article
      ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurite branching is essential for the establishment of appropriate neuronal connections during development and regeneration. We identify the small GTPase Ral as a mediator of neurite branching. Active Ral promotes neurite branching in cortical and sympathetic neurons, whereas Ral inhibition decreases laminin-induced branching. In addition, depletion of endogenous Ral by RNA interference decreases branching in cortical neurons. The two Ral isoforms, RalA and -B, promote branching through distinct pathways, involving the exocyst complex and phospholipase D, respectively. Finally, Ral-dependent branching is mediated by protein kinase C–dependent phosphorylation of 43-kD growth-associated protein, a crucial molecule involved in pathfinding, plasticity, and regeneration. These findings highlight an important role for Ral in the regulation of neuronal morphology.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity.

            Liqun Luo (2001)
            The actin cytoskeleton plays a major role in morphological development of neurons and in structural changes of adult neurons. This article reviews the myriad functions of actin and myosin in axon initiation, growth, guidance and branching, in morphogenesis of dendrites and dendritic spines, in synapse formation and stability, and in axon and dendrite retraction. Evidence is presented that signaling pathways involving the Rho family of small GTPases are key regulators of actin polymerization and myosin function in the context of different aspects of neuronal morphogenesis. These studies support an emerging theme: Different aspects of neuronal morphogenesis may involve regulation of common core signaling pathways, in particular the Rho GTPases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.

              Regulation of neurite outgrowth and structural plasticity may involve the expression of intrinsic determinants controlling growth competence. We have tested this concept by targeting constitutive expression of the growth-associated protein GAP-43 to the neurons of adult transgenic mice. Such mice showed striking spontaneous nerve sprouting at the neuromuscular junction and in the terminal field of hippocampal mossy fibers. In control mice, these nerve fibers did not express GAP-43, and did not sprout spontaneously. Lesion-induced nerve sprouting and terminal arborization during reinnervation were greatly potentiated in GAP-43-overexpressing mice. A mutant GAP-43 that cannot be phosphorylated by PKC had reduced sprout-promoting activity. The results establish GAP-43 as an intrinsic presynaptic determinant for neurite outgrowth and plasticity.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                JCB
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                5 December 2005
                : 171
                : 5
                : 857-869
                Affiliations
                Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, England, UK
                Author notes

                Correspondence to Alan Hall: alan.hall@ 123456ucl.ac.uk

                Article
                200507061
                10.1083/jcb.200507061
                2171284
                16330713
                71149ff5-1fa1-4b1d-a1e2-a1834270d401
                Copyright © 2005, The Rockefeller University Press
                History
                : 13 July 2005
                : 31 October 2005
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article