16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies

      , , , , , , , , ,
      Environment International
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1506170e148">Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 μM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 μM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns. </p>

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An overview of the Amber biomolecular simulation package: Amber biomolecular simulation package

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mouse 4T1 breast tumor model.

              The 4T1 mammary carcinoma is a transplantable tumor cell line that is highly tumorigenic and invasive and, unlike most tumor models, can spontaneously metastasize from the primary tumor in the mammary gland to multiple distant sites including lymph nodes, blood, liver, lung, brain, and bone The 4T1 tumor has several characteristics that make it a suitable experimental animal model for human mammary cancer. First, tumor cells are easily transplanted into the mammary gland so that the primary tumor grows in the anatomically correct site, as described in this unit. Second, as in human breast cancer, 4T1 metastatic disease develops spontaneously from the primary tumor. Also, the progressive spread of 4T1 metastases to the draining lymph nodes and other organs is very similar to that of human mammary cancer. In this unit, a protocol describes surgical removal of the primary tumor, so that metastatic disease can be studied in an animal setting comparable to the clinical situation where the primary tumor is surgically removed, and metastatic foci remain intact. Another advantage of 4T1 is its resistance to 6-thioguanine. This property enables precise quantitation of metastatic cells, even when they are disseminated and at sub-microscopic levels in distant organs, as described here.
                Bookmark

                Author and article information

                Journal
                Environment International
                Environment International
                Elsevier BV
                01604120
                December 2022
                December 2022
                : 170
                : 107568
                Article
                10.1016/j.envint.2022.107568
                36240625
                7105e2e6-f540-4ff4-9dbb-e1815f285396
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article