50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To provide a snapshot of the profile of adults and youth with type 1 diabetes (T1D) in the United States and assessment of longitudinal changes in T1D management and clinical outcomes in the T1D Exchange registry.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry.

          To examine the overall state of metabolic control and current use of advanced diabetes technologies in the U.S., we report recent data collected on individuals with type 1 diabetes participating in the T1D Exchange clinic registry. Data from 16,061 participants updated between 1 September 2013 and 1 December 2014 were compared with registry enrollment data collected from 1 September 2010 to 1 August 2012. Mean hemoglobin A1c (HbA1c) was assessed by year of age from 75 years. The overall average HbA1c was 8.2% (66 mmol/mol) at enrollment and 8.4% (68 mmol/mol) at the most recent update. During childhood, mean HbA1c decreased from 8.3% (67 mmol/mol) in 2-4-year-olds to 8.1% (65 mmol/mol) at 7 years of age, followed by an increase to 9.2% (77 mmol/mol) in 19-year-olds. Subsequently, mean HbA1c values decline gradually until ∼30 years of age, plateauing at 7.5-7.8% (58-62 mmol/mol) beyond age 30 until a modest drop in HbA1c below 7.5% (58 mmol/mol) in those 65 years of age. Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) remain all too common complications of treatment, especially in older (SH) and younger patients (DKA). Insulin pump use increased slightly from enrollment (58-62%), and use of continuous glucose monitoring (CGM) did not change (7%). Although the T1D Exchange registry findings are not population based and could be biased, it is clear that there remains considerable room for improving outcomes of treatment of type 1 diabetes across all age-groups. Barriers to more effective use of current treatments need to be addressed and new therapies are needed to achieve optimal metabolic control in people with type 1 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The T1D Exchange clinic registry.

            The T1D Exchange includes a clinic-based registry, a patient-centric web site called Glu, and a biobank. The aim of the study was to describe the T1D Exchange clinic registry and provide an overview of participant characteristics. Data obtained through participant completion of a questionnaire and chart extraction include diabetes history, management, and monitoring; general health; lifestyle; family history; socioeconomic factors; medications; acute and chronic diabetic complications; other medical conditions; and laboratory results. Data were collected from 67 endocrinology centers throughout the United States. We studied 25,833 adults and children with presumed autoimmune type 1 diabetes (T1D). Participants ranged in age from less than 1 to 93 yr, 50% were female, 82% were Caucasian, 50% used an insulin pump, 6% used continuous glucose monitoring, and 16% had a first-degree family member with T1D. Glycosylated hemoglobin at enrollment averaged 8.3% and was highest in 13 to 25 yr olds. The prevalence of renal disease was ≤4% until T1D was present for at least 10 yr, and retinopathy treatment was ≤2% until T1D was present for at least 20 yr. A severe hypoglycemic event (seizure or coma) in the prior 12 months was reported by 7% of participants and diabetic ketoacidosis in the prior 12 months by 8%. The T1D Exchange clinic registry provides a database of important information on individuals with T1D in the United States. The rich dataset of the registry provides an opportunity to address numerous issues of relevance to clinicians and patients, including assessments of associations between patient characteristics and diabetes management factors with outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes

              Question Are the rates of severe hypoglycemia and diabetic ketoacidosis lower with insulin pump therapy than with insulin injection therapy in young patients with type 1 diabetes? Findings In this population-based observational study including 30 579 young patients with type 1 diabetes, pump therapy, compared with injection therapy, was associated with significantly lower rates of severe hypoglycemia (9.55 vs 13.97 per 100 patient-years) and ketoacidosis (3.64 vs 4.26 per 100 patient-years), and with lower hemoglobin A 1c levels (8.04% vs 8.22%) in a propensity score–matched cohort. Meaning Insulin pump therapy was associated with reduced risks of short-term diabetes complications and with better glycemic control compared with injection therapy. Importance Insulin pump therapy may improve metabolic control in young patients with type 1 diabetes, but the association with short-term diabetes complications is unclear. Objective To determine whether rates of severe hypoglycemia and diabetic ketoacidosis are lower with insulin pump therapy compared with insulin injection therapy in children, adolescents, and young adults with type 1 diabetes. Design, Setting, and Participants Population-based cohort study conducted between January 2011 and December 2015 in 446 diabetes centers participating in the Diabetes Prospective Follow-up Initiative in Germany, Austria, and Luxembourg. Patients with type 1 diabetes younger than 20 years and diabetes duration of more than 1 year were identified. Propensity score matching and inverse probability of treatment weighting analyses with age, sex, diabetes duration, migration background (defined as place of birth outside of Germany or Austria), body mass index, and glycated hemoglobin as covariates were used to account for relevant confounders. Exposures Type 1 diabetes treated with insulin pump therapy or with multiple (≥4) daily insulin injections. Main Outcomes and Measures Primary outcomes were rates of severe hypoglycemia and diabetic ketoacidosis during the most recent treatment year. Secondary outcomes included glycated hemoglobin levels, insulin dose, and body mass index. Results Of 30 579 patients (mean age, 14.1 years [SD, 4.0]; 53% male), 14 119 used pump therapy (median duration, 3.7 years) and 16 460 used insulin injections (median duration, 3.6 years). Patients using pump therapy (n = 9814) were matched with 9814 patients using injection therapy. Pump therapy, compared with injection therapy, was associated with lower rates of severe hypoglycemia (9.55 vs 13.97 per 100 patient-years; difference, −4.42 [95% CI, −6.15 to −2.69]; P  < .001) and diabetic ketoacidosis (3.64 vs 4.26 per 100 patient-years; difference, −0.63 [95% CI, −1.24 to −0.02]; P  = .04). Glycated hemoglobin levels were lower with pump therapy than with injection therapy (8.04% vs 8.22%; difference, −0.18 [95% CI, −0.22 to −0.13], P  < .001). Total daily insulin doses were lower for pump therapy compared with injection therapy (0.84 U/kg vs 0.98 U/kg; difference, −0.14 [−0.15 to −0.13], P  < .001). There was no significant difference in body mass index between both treatment regimens. Similar results were obtained after propensity score inverse probability of treatment weighting analyses in the entire cohort. Conclusions and Relevance Among young patients with type 1 diabetes, insulin pump therapy, compared with insulin injection therapy, was associated with lower risks of severe hypoglycemia and diabetic ketoacidosis and with better glycemic control during the most recent year of therapy. These findings provide evidence for improved clinical outcomes associated with insulin pump therapy compared with injection therapy in children, adolescents, and young adults with type 1 diabetes. This population-based cohort study compares rates of severe hypoglycemia and diabetic ketoacidosis among children, adolescents, and young adults with type 1 diabetes managed with insulin pump therapy vs insulin injection therapy.
                Bookmark

                Author and article information

                Journal
                Diabetes Technology & Therapeutics
                Diabetes Technology & Therapeutics
                Mary Ann Liebert Inc
                1520-9156
                1557-8593
                January 18 2019
                January 18 2019
                Affiliations
                [1 ]Jaeb Center for Health Research, Tampa, Florida.
                [2 ]Endocrine/Diabetes Department, Children's Mercy Hospital, Kansas City, Missouri.
                [3 ]Rodebaugh Diabetes Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
                [4 ]Department of Pediatrics, Indiana University School of Medicine, Indianapolis Indiana.
                [5 ]Department of Pediatrics-Endocrinology, Stanford University, Stanford, California.
                [6 ]Pediatric Endocrinology and Diabetes, Yale University School of Medicine, New Haven, Connecticut.
                [7 ]International Diabetes Center Park Nicollet, Minneapolis, Minnesota.
                [8 ]Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado.
                Article
                10.1089/dia.2018.0384
                7061293
                30657336
                70fb0e9b-70b4-4981-86e6-da1a8f223788
                © 2019

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article