31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using the methods developed by Fewster and colleagues, we derive a quantum inequality for the free massive spin-\({3\over 2}\) Rarita-Schwinger fields in the four dimensional Minkowski spacetime. Our quantum inequality bound for the Rarita-Schwinger fields is weaker, by a factor of 2, than that for the spin-\({1\over 2}\) Dirac fields. This fact along with other quantum inequalities obtained by various other authors for the fields of integer spin (bosonic fields) using similar methods lead us to conjecture that, in the flat spacetime, separately for bosonic and fermionic fields, the quantum inequality bound gets weaker as the the number of degrees of freedom of the field increases. A plausible physical reason might be that the more the number of field degrees of freedom, the more freedom one has to create negative energy, therefore, the weaker the quantum inequality bound.

          Related collections

          Author and article information

          Journal
          15 December 2003
          Article
          10.1103/PhysRevD.69.064008
          gr-qc/0312071
          70d474a0-9d84-4ccd-a865-ef42a603bfdc
          History
          Custom metadata
          Phys.Rev. D69 (2004) 064008
          Revtex, 11 pages, to appear in PRD
          gr-qc hep-th

          Comments

          Comment on this article