There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Graphical abstract
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed
cell death discovered and investigated in recent years. There are already many studies
demonstrating the essential role of necroptosis in various diseases, including inflammatory
diseases, cardiovascular diseases and neurological diseases. However, the potential
of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis
signaling pathway and thus ameliorate necroptotic cell death in disease development.
Recent research findings indicate that Nec-1 could be applied in several types of
diseases to alleviate disease development or improve prognosis. Moreover, we predict
that Nec-1 has the potential to protect against the complications of coronavirus disease
2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and
the underlying molecular mechanism, providing research evidence for its future application.
Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
Summary Cytokine storm is an excessive immune response to external stimuli. The pathogenesis of the cytokine storm is complex. The disease progresses rapidly, and the mortality is high. Certain evidence shows that, during the coronavirus disease 2019 (COVID-19) epidemic, the severe deterioration of some patients has been closely related to the cytokine storm in their bodies. This article reviews the occurrence mechanism and treatment strategies of the COVID-19 virus-induced inflammatory storm in attempt to provide valuable medication guidance for clinical treatment.
Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4+ and CD8+ T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8+ T cells or CD4+ T cells lower than 800, 300, or 400/μL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/μL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
[0005]State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics,
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai,
200025, China
Since January 2020 Elsevier has created a COVID-19 resource centre with free information
in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre
is hosted on Elsevier Connect, the company's public news and information website.
Elsevier hereby grants permission to make all its COVID-19-related research that is
available on the COVID-19 resource centre - including this research content - immediately
available in PubMed Central and other publicly funded repositories, such as the WHO
COVID database with rights for unrestricted research re-use and analyses in any form
or by any means with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.