2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenological Flowering Patterns of Woody Plants in the Function of Landscape Design: Case Study Belgrade

      , , , , ,
      Land
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study focuses on describing key events in the flowering phenophases of woody taxa that promote practical landscape sustainability and design planning. Apart from the beginning of flowering, the full development and the duration of phenophases are important for landscape architecture, consumers, and pollination. The phenological patterns of 13 woody taxa were monitored for 16 years through 90,860 phenological observations from the BBCH scale for the period 2007–2022. Growing degree days were determined by combining phenological and climatic data and a linear trend was used to assess phenophase tendencies. Mann–Kendall and Sen’s slope tests and Spearman’s correlation coefficient were used to assess statistical significance. Shifts in flowering indicated warming trends, reflecting various changes in phenology. Early flowering taxa were affected the most, but plants shifted phenophases in both directions (earlier and later in the year). Repeated flowering (and occasionally fruiting) and even third flowering, as seen in 2022, can significantly affect biodiversity and lead to plant–pollinator asynchrony and changes in ecosystem functioning, ecological interaction, and landscape design. A list of native and introduced taxa and their adaptation mechanisms to climate change are provided and can be used for sustainable landscape design and nature-based solutions in landscape architecture.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          A globally coherent fingerprint of climate change impacts across natural systems.

          Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.

            Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of urban parks for the sustainable city

                Bookmark

                Author and article information

                Journal
                Land
                Land
                MDPI AG
                2073-445X
                March 2023
                March 18 2023
                : 12
                : 3
                : 706
                Article
                10.3390/land12030706
                70774e8a-eb83-40d2-ace7-d96512eff951
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article