1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CAZymes in Maribacter dokdonensis 62–1 From the Patagonian Shelf: Genomics and Physiology Compared to Related Flavobacteria and a Co-occurring Alteromonas Strain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbohydrate-active enzymes (CAZymes) are an important feature of bacteria in productive marine systems such as continental shelves, where phytoplankton and macroalgae produce diverse polysaccharides. We herein describe Maribacter dokdonensis 62–1, a novel strain of this flavobacterial species, isolated from alginate-supplemented seawater collected at the Patagonian continental shelf. M. dokdonensis 62–1 harbors a diverse array of CAZymes in multiple polysaccharide utilization loci (PUL). Two PUL encoding polysaccharide lyases from families 6, 7, 12, and 17 allow substantial growth with alginate as sole carbon source, with simultaneous utilization of mannuronate and guluronate as demonstrated by HPLC. Furthermore, strain 62-1 harbors a mixed-feature PUL encoding both ulvan- and fucoidan-targeting CAZymes. Core-genome phylogeny and pangenome analysis revealed variable occurrence of these PUL in related Maribacter and Zobellia strains, indicating specialization to certain “polysaccharide niches.” Furthermore, lineage- and strain-specific genomic signatures for exopolysaccharide synthesis possibly mediate distinct strategies for surface attachment and host interaction. The wide detection of CAZyme homologs in algae-derived metagenomes suggests global occurrence in algal holobionts, supported by sharing multiple adaptive features with the hydrolytic model flavobacterium Zobellia galactanivorans. Comparison with Alteromonas sp. 76-1 isolated from the same seawater sample revealed that these co-occurring strains target similar polysaccharides but with different genomic repertoires, coincident with differing growth behavior on alginate that might mediate ecological specialization. Altogether, our study contributes to the perception of Maribacter as versatile flavobacterial polysaccharide degrader, with implications for biogeochemical cycles, niche specialization and bacteria-algae interactions in the oceans.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

            The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              OrthoFinder: phylogenetic orthology inference for comparative genomics

              Here, we present a major advance of the OrthoFinder method. This extends OrthoFinder’s high accuracy orthogroup inference to provide phylogenetic inference of orthologs, rooted gene trees, gene duplication events, the rooted species tree, and comparative genomics statistics. Each output is benchmarked on appropriate real or simulated datasets, and where comparable methods exist, OrthoFinder is equivalent to or outperforms these methods. Furthermore, OrthoFinder is the most accurate ortholog inference method on the Quest for Orthologs benchmark test. Finally, OrthoFinder’s comprehensive phylogenetic analysis is achieved with equivalent speed and scalability to the fastest, score-based heuristic methods. OrthoFinder is available at https://github.com/davidemms/OrthoFinder.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 April 2021
                2021
                : 12
                : 628055
                Affiliations
                [1] 1Institute for Chemistry and Biology of the Marine Environment , Oldenburg, Germany
                [2] 2JST ERATO Nomura Project, Faculty of Life and Environmental Sciences , Tsukuba, Japan
                [3] 3Faculty of Biology, University of Belgrade , Belgrade, Serbia
                [4] 4Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University , Göttingen, Germany
                [5] 5Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research , Bremerhaven, Germany
                Author notes

                Edited by: Chao Liang, Institute of Applied Ecology (CAS), China

                Reviewed by: Abbot Okotie Oghenekaro, University of Manitoba, Canada; Ahmed Gomaa, National Research Centre, Egypt

                *Correspondence: Matthias Wietz, matthias.wietz@ 123456awi.de

                This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.628055
                8072126
                33912144
                6feea70f-556b-4955-8132-1fb4083293e8
                Copyright © 2021 Wolter, Mitulla, Kalem, Daniel, Simon and Wietz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2020
                : 10 March 2021
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 88, Pages: 11, Words: 0
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: WI3888/1-2
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: TRR 51
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                alginate,fucoidan,ulvan,pul,macroalgae,eps,pangenome,zobellia galactanivorans
                Microbiology & Virology
                alginate, fucoidan, ulvan, pul, macroalgae, eps, pangenome, zobellia galactanivorans

                Comments

                Comment on this article