111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol.

          The phosphatidylinositol 3-kinase (PI3K)/Akt pathway elicits a survival signal against multiple apoptotic insults. In addition, phase II enzymes such as heme oxygenase-1 (HO-1) protect cells against diverse toxins and oxidative stress. In this work, we describe a link between these defense systems at the level of transcriptional regulation of the antioxidant enzyme HO-1. The herb-derived phenol carnosol induced HO-1 expression at both mRNA and protein levels. Luciferase reporter assays indicated that carnosol targeted the mouse ho1 promoter at two enhancer regions comprising the antioxidant response elements (AREs). Moreover, carnosol increased the nuclear levels of Nrf2, a transcription factor governing AREs. Electrophoretic mobility shift assays and luciferase reporter assays with a dominant-negative Nrf2 mutant indicated that carnosol increased the binding of Nrf2 to ARE and induced Nrf2-dependent activation of the ho1 promoter. While investigating the signaling pathways responsible for HO-1 induction, we observed that carnosol activated the ERK, p38, and JNK pathways as well as the survival pathway driven by PI3K. Inhibition of PI3K reduced the increase in Nrf2 protein levels and activation of the ho1 promoter. Expression of active PI3K-CAAX (where A is aliphatic amino acid) was sufficient to activate AREs. The use of dominant-negative mutants of protein kinase Czeta and Akt1, two kinases downstream from PI3K, demonstrated a requirement for active Akt1, but not protein kinase Czeta. Moreover, the long-term antioxidant effect of carnosol was partially blocked by PI3K or HO-1 inhibitors, further demonstrating that carnosol attenuates oxidative stress through a pathway that involves PI3K and HO-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nrf2: a potential molecular target for cancer chemoprevention by natural compounds.

            One of the most prominent strategies of cancer chemoprevention might be protecting cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. This protection could be achieved through the induction of phase 2 detoxifying enzymes and antioxidant enzymes such as glutathione S-transferase, NAD(P)H quinone oxidoreductase 1, and heme oxygenase-1, a process that is mediated mainly by the antioxidant response elements (ARE) within the promoter regions of these genes. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n' collar (CNC) family of basic region-leucine zipper transcription factors, plays a key role in ARE-mediated gene expression. Under normal condition, Nrf2 is sequestered in the cytoplasm by an actin-binding protein, Kelch-like ECH associating protein 1 (Keap1), and upon exposure of cells to inducers such as oxidative stress and certain chemopreventive agents, Nrf2 dissociates from Keap1, translocates to the nucleus, binds to AREs, and transactivates phase 2 detoxifying and antioxidant genes. Several upstream signaling pathways including mitogen-activated protein kinases, protein kinase C, phosphatidylinositol 3-kinase, and transmembrane kinase are implicated in the regulation of Nrf2/ARE activity. Furthermore, many natural chemopreventive agents are known to induce Nrf2/ARE-dependent gene expression, also in part by regulating the turnover of the Nrf2 protein itself. This review discusses our current understanding of the Nrf2/ARE pathway as a potential molecular target for cancer chemoprevention, as well as the feasibility of screening natural compounds for activation of this pathway and as potential cancer preventive agents for human use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far?

              Lycium barbarum (Gouqizi, Fructus Lycii, Wolfberry) is well known for nourishing the liver, and in turn, improving the eyesight. However, many people have forgotten its anti-aging properties. Valuable components of L. barbarum are not limited to its colored components containing zeaxanthin and carotene, but include the polysaccharides and small molecules such as betaine, cerebroside, beta-sitosterol, p-coumaric, and various vitamins. Despite the fact that L. barbarum has been used for centuries, its beneficial effects to our bodies have not been comprehensively studied with modern technology to unravel its therapeutic effects at the biochemical level. Recently, our laboratory has demonstrated its neuroprotective effects to counter neuronal loss in neurodegenerative diseases. Polysaccharides extracted from L. barbarum can protect neurons against beta-amyloid peptide toxicity in neuronal cell cultures, and retinal ganglion cells in an experimental model of glaucoma. We have even isolated the active component of polysaccharide which can attenuate stress kinases and pro-apoptotic signaling pathways. We have accumulated scientific evidence for its anti-aging effects that should be highlighted for modern preventive medicine. This review is to provide background information and a new direction of study for the anti-aging properties of L. barbarum. We hope that new findings for L. barbarum will pave a new avenue for the use of Chinese medicine in modern evidence-based medicine.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 January 2014
                : 9
                : 1
                : e84800
                Affiliations
                [1 ]Department of Anatomy/Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
                [2 ]Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
                [3 ]Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
                [4 ]Department of Anatomy and Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
                [5 ]The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
                [6 ]GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
                [7 ]Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
                [8 ]Department of Neurobiology, Department of Medicine, Jules Stein Eye Institute, CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California Los Angeles, Los Angeles, California, United States of America
                [9 ]Veterans Administration, Greater Los Angeles Health System, Los Angeles, California, United States of America
                University of Pecs Medical School, Hungary
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MH MP. Performed the experiments: MH HP NB. Analyzed the data: MH HP RCCC KS. Contributed reagents/materials/analysis tools: KS RCCC NCB. Wrote the paper: MH MP.

                Article
                PONE-D-13-37466
                10.1371/journal.pone.0084800
                3882254
                24400114
                6fdf8219-ccd2-46e6-b58f-c872abb3d0d0
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 September 2013
                : 25 November 2013
                Page count
                Pages: 11
                Funding
                This study was supported by grants obtained from the National Basic Research Program of China (973 Program, 2009CB320900 [MP] and 2011CB510206 [MP]), the National Science Foundation of China (30831160516 [MP] and 81200691 [MH]), the Ministry of Education of China (20090001120075 [MH]), Azalea (1972) Endowment Fund (KS & RC), and the Fundamental Research Fund for the Central Universities (21609101, KS), NIH EY04067 (NCB) and VA Merit Review (NB). NCB is a VA Career Research Scientist. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Oxygen Metabolism
                Model Organisms
                Animal Models
                Rat
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                Antiapoptotic Signaling
                Neuroscience
                Sensory Systems
                Visual System
                Neurobiology of Disease and Regeneration
                Medicine
                Drugs and Devices
                Environmental Pharmacology
                Neurology
                Neurodegenerative Diseases
                Neuro-Ophthalmology
                Neuropharmacology
                Ophthalmology
                Glaucoma
                Retinal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content210

                Cited by72

                Most referenced authors600