20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In endothelial cells, H 2O 2 induces the rapid formation of focal adhesion complexes at the ventral face of the cells and a major reorganization of the actin cytoskeleton into dense transcytoplasmic stress fibers. This change in actin dynamics results from the activation of the mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38), which, via MAP kinase-activated protein (MAPKAP) kinase-2/3, leads to the phosphorylation of the actin polymerization modulator heat shock protein of 27 kD (HSP27). Here we show that the concomitant activation of the extracellular signal-regulated kinase (ERK) MAP kinase pathway by H 2O 2 accomplishes an essential survival function during this process. When the activation of ERK was blocked with PD098059, the focal adhesion complexes formed under the plasma membrane, and the actin polymerization activity led to a rapid and intense membrane blebbing. The blebs were delimited by a thin F-actin ring and contained enhanced levels of HSP27. Later, the cells displayed hallmarks of apoptosis, such as DEVD protease activities and internucleosomal DNA fragmentation. Bleb formation but not apoptosis was blocked by extremely low concentrations of the actin polymerization inhibitor cytochalasin D or by the SAPK2 inhibitor SB203580, indicating that the two processes are not in the same linear cascade. The role of HSP27 in mediating membrane blebbing was assessed in fibroblastic cells. In control fibroblasts expressing a low level of endogenous HSP27 or in fibroblasts expressing a high level of a nonphosphorylatable HSP27, H 2O 2 did not induce F-actin accumulation, nor did it generate membrane blebbing activity in the presence or absence of PD098059. In contrast, in fibroblasts that expressed wild-type HSP27 to a level similar to that found in endothelial cells, H 2O 2 induced accumulation of F-actin and caused bleb formation when the ERK pathway was inhibited. Cis-platinum, which activated SAPK2 but induced little ERK activity, also induced membrane blebbing that was dependent on the expression of HSP27. In these cells, membrane blebbing was not followed by caspase activation or DNA fragmentation. We conclude that the HSP27-dependent actin polymerization–generating activity of SAPK2 associated with a misassembly of the focal adhesions is responsible for induction of membrane blebbing by stressing agents.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of epithelial cell-matrix interactions induces apoptosis

          Cell-matrix interactions have major effects upon phenotypic features such as gene regulation, cytoskeletal structure, differentiation, and aspects of cell growth control. Programmed cell death (apoptosis) is crucial for maintaining appropriate cell number and tissue organization. It was therefore of interest to determine whether cell- matrix interactions affect apoptosis. The present report demonstrates that apoptosis was induced by disruption of the interactions between normal epithelial cells and extracellular matrix. We have termed this phenomenon "anoikis." Overexpression of bcl-2 protected cells against anoikis. Cellular sensitivity to anoikis was apparently regulated: (a) anoikis did not occur in normal fibroblasts; (b) it was abrogated in epithelial cells by transformation with v-Ha-ras, v-src, or treatment with phorbol ester; (c) sensitivity to anoikis was conferred upon HT1080 cells or v-Ha-ras-transformed MDCK cells by reverse- transformation with adenovirus E1a; (d) anoikis in MDCK cells was alleviated by the motility factor, scatter factor. The results suggest that the circumvention of anoikis accompanies the acquisition of anchorage independence or cell motility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.

            Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

              Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                30 November 1998
                : 143
                : 5
                : 1361-1373
                Affiliations
                [* ]Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec, G1R 2J6, Canada; and []Laboratoire de recherche sur le cancer de la peau CHUL, RC-9700, Sainte-Foy, Québec, Canada
                Author notes

                Address correspondence to Dr. Jacques Huot, Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 11 côte du Palais, Québec, G1R 2J6, Canada. Tel.: (418) 691-5553. Fax: (418) 691-5439. E-mail: Jacques.Huot@ 123456phc.ulaval.ca

                Article
                10.1083/jcb.143.5.1361
                2133090
                9832563
                6fc43d07-4fd5-48b6-82fb-febae5e95922
                Copyright @ 1998
                History
                : 15 June 1998
                : 8 October 1998
                Categories
                Article

                Cell biology
                sapk2/p38,hsp27,f-actin,blebbing,apoptosis
                Cell biology
                sapk2/p38, hsp27, f-actin, blebbing, apoptosis

                Comments

                Comment on this article