In this paper, we study the approximate controllability of nonlocal fractional differential inclusions involving the Caputo fractional derivative of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions when the multivalued maps are convex. Precisely, the results are developed under the assumption that the corresponding linear system is approximately controllable.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.