16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Restore or Redefine: Future Trajectories for Restoration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: found

          CRISPR/Cas9 in Genome Editing and Beyond

          The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A quantitative survey of local adaptation and fitness trade-offs.

            The long history of reciprocal transplant studies testing the hypothesis of local adaptation has shown that populations are often adapted to their local environments. Yet many studies have not demonstrated local adaptation, suggesting that sometimes native populations are no better adapted than are genotypes from foreign environments. Local adaptation may also lead to trade-offs, in which adaptation to one environment comes at a cost of adaptation to another environment. I conducted a survey of published studies of local adaptation to quantify its frequency and magnitude and the costs associated with local adaptation. I also quantified the relationship between local adaptation and environmental differences and the relationship between local adaptation and phenotypic divergence. The overall frequency of local adaptation was 0.71, and the magnitude of the native population advantage in relative fitness was 45%. Divergence between home site environments was positively associated with the magnitude of local adaptation, but phenotypic divergence was not. I found a small negative correlation between a population's relative fitness in its native environment and its fitness in a foreign environment, indicating weak trade-offs associated with local adaptation. These results suggest that populations are often locally adapted but stochastic processes such as genetic drift may limit the efficacy of divergent selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecophysiology. Climate change tightens a metabolic constraint on marine habitats.

              Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index-the ratio of O2 supply to resting metabolic O2 demand-across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ~2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean's metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.
                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                April 17 2020
                April 17 2020
                : 7
                Article
                10.3389/fmars.2020.00237
                32802822
                6f37e5df-ee41-4251-b36c-1bedacc2174a
                © 2020

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article