3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Pipeline for Predicting the Treatment Response of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer Using Single MRI Modality: Combining Deep Segmentation Network and Radiomics Analysis Based on “Suspicious Region”

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with locally advanced rectal cancer (LARC) who achieve a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) typically have a good prognosis. An early and accurate prediction of the treatment response, i.e., whether a patient achieves pCR, could significantly help doctors make tailored plans for LARC patients. This study proposes a pipeline of pCR prediction using a combination of deep learning and radiomics analysis. Taking into consideration missing pre-nCRT magnetic resonance imaging (MRI), as well as aiming to improve the efficiency for clinical application, the pipeline only included a post-nCRT T2-weighted (T2-w) MRI. Unlike other studies that attempted to carefully find the region of interest (ROI) using a pre-nCRT MRI as a reference, we placed the ROI on a “suspicious region”, which is a continuous area that has a high possibility to contain a tumor or fibrosis as assessed by radiologists. A deep segmentation network, termed the two-stage rectum-aware U-Net (tsraU-Net), is designed to segment the ROI to substitute for a time-consuming manual delineation. This is followed by a radiomics analysis model based on the ROI to extract the hidden information and predict the pCR status. The data from a total of 275 patients were collected from two hospitals and partitioned into four datasets: Seg-T (N = 88) for training the tsraUNet, Rad-T (N = 107) for building the radiomics model, In-V (N = 46) for internal validation, and Ex-V (N = 34) for external validation. The proposed method achieved an area under the curve (AUC) of 0.829 (95% confidence interval [CI]: 0.821, 0.837) on In-V and 0.815 (95% CI, 0.801, 0.830) on Ex-V. The performance of the method was considerable and stable in two validation sets, indicating that the well-designed pipeline has the potential to be used in real clinical procedures.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            U-Net: Convolutional Networks for Biomedical Image Segmentation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colorectal cancer statistics, 2020

              Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC occurrence based on incidence data (available through 2016) from population-based cancer registries and mortality data (through 2017) from the National Center for Health Statistics. In 2020, approximately 147,950 individuals will be diagnosed with CRC and 53,200 will die from the disease, including 17,930 cases and 3,640 deaths in individuals aged younger than 50 years. The incidence rate during 2012 through 2016 ranged from 30 (per 100,000 persons) in Asian/Pacific Islanders to 45.7 in blacks and 89 in Alaska Natives. Rapid declines in incidence among screening-aged individuals during the 2000s continued during 2011 through 2016 in those aged 65 years and older (by 3.3% annually) but reversed in those aged 50 to 64 years, among whom rates increased by 1% annually. Among individuals aged younger than 50 years, the incidence rate increased by approximately 2% annually for tumors in the proximal and distal colon, as well as the rectum, driven by trends in non-Hispanic whites. CRC death rates during 2008 through 2017 declined by 3% annually in individuals aged 65 years and older and by 0.6% annually in individuals aged 50 to 64 years while increasing by 1.3% annually in those aged younger than 50 years. Mortality declines among individuals aged 50 years and older were steepest among blacks, who also had the only decreasing trend among those aged younger than 50 years, and excluded American Indians/Alaska Natives, among whom rates remained stable. Progress against CRC can be accelerated by increasing access to guideline-recommended screening and high-quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle-aged adults.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                04 August 2021
                2021
                : 11
                : 711747
                Affiliations
                [1] 1Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
                [2] 2Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases , Supported by National Key Clinical Discipline, Guangzhou, China
                [3] 3School of Computer Science and Engineering, Sun Yat-sen University , Guangzhou, China
                [4] 4Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
                Author notes

                Edited by: Niccolo Petrucciani, Sapienza University of Rome, Italy

                Reviewed by: Marc Gollub, Memorial Sloan Kettering Cancer Center, United States; Xueliang Wu, First Affiliated Hospital of Hebei North University, China; Luciano Izzo, Sapienza University of Rome, Italy

                *Correspondence: Xinjuan Fan, fanxjuan@ 123456mail.sysu.edu.cn

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Gastrointestinal Cancers, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.711747
                8371269
                34422664
                6f3119e4-56d3-44d6-b359-5dc4139bed6f
                Copyright © 2021 Pang, Wang, Zhang, Li, Huang, Yin and Fan

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 May 2021
                : 06 July 2021
                Page count
                Figures: 9, Tables: 5, Equations: 8, References: 53, Pages: 14, Words: 7271
                Categories
                Oncology
                Technology and Code

                Oncology & Radiotherapy
                larc,ncrt,mri,radiomics analysis,deep learning
                Oncology & Radiotherapy
                larc, ncrt, mri, radiomics analysis, deep learning

                Comments

                Comment on this article