Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      One-Pot Thermal Synthesis of g-C3N4/ZnO Composites for the Degradation of 5-Fluoruracil Cytostatic Drug under UV-LED Irradiation.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphitic carbon nitride (g-C3N4) was used to enhance the photocatalytic activity of ZnO nanoparticles for the degradation of 5-fluorouracil (5-FU) cytostatic drug under UV-LED irradiation. CN/ZnO composites were synthetized by an easy one-pot thermal method, varying the g-C3N4 loading, i.e., from 10 to 67 wt% and a post-thermal exfoliation in air. The physicochemical and optical properties of the materials were analyzed by several techniques. CN/ZnO composites showed a coral-like structure of spherical ZnO wurtzite particles on the g-C3N4 structure. In general, the synergism and heterojunction interface between both phases allowed the enhancement of the mesoporosity, light absorption ability, and the aromaticity of the corresponding composites. Moreover, the photocatalytic activity of the CN/ZnO composites was increased with the addition of g-C3N4 in comparison with pristine ZnO. The highest activity was found for the composite containing 25 wt% of g-C3N4 (i.e., CN25/ZnO), reaching the total degradation of 5-FU and a mineralization of 48% at 180 min, as well as a good photostability during four reuse cycles. Experiments with different pH solutions and scavengers allowed for the assessment of the reactive oxygen species (ROS) involved in the 5-FU degradation pathway, with radicals and non-radical species as the main responsible active species. Furthermore, a tentative photocatalytic mechanism was proposed for CN/ZnO composites.

          Related collections

          Author and article information

          Journal
          Nanomaterials (Basel)
          Nanomaterials (Basel, Switzerland)
          MDPI AG
          2079-4991
          2079-4991
          Jan 21 2022
          : 12
          : 3
          Affiliations
          [1 ] NanoTech-Nanomaterials and Sustainable Chemical Technologies, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva, s/n, ES-18071 Granada, Spain.
          Article
          nano12030340
          10.3390/nano12030340
          8838034
          35159683
          6f280ae4-eb0f-408d-b312-04364059468e
          History

          carbon nitride,5-fluorouracil,zinc oxide,water treatment,scavengers,photocatalysis

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content140

          Cited by9