105
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of the Evolution of Cancer Treatment Therapies

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer therapy has been characterized throughout history by ups and downs, not only due to the ineffectiveness of treatments and side effects, but also by hope and the reality of complete remission and cure in many cases. Within the therapeutic arsenal, alongside surgery in the case of solid tumors, are the antitumor drugs and radiation that have been the treatment of choice in some instances. In recent years, immunotherapy has become an important therapeutic alternative, and is now the first choice in many cases. Nanotechnology has recently arrived on the scene, offering nanostructures as new therapeutic alternatives for controlled drug delivery, for combining imaging and treatment, applying hyperthermia, and providing directed target therapy, among others. These therapies can be applied either alone or in combination with other components (antibodies, peptides, folic acid, etc.). In addition, gene therapy is also offering promising new methods for treatment. Here, we present a review of the evolution of cancer treatments, starting with chemotherapy, surgery, radiation and immunotherapy, and moving on to the most promising cutting-edge therapies (gene therapy and nanomedicine). We offer an historical point of view that covers the arrival of these therapies to clinical practice and the market, and the promises and challenges they present.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles in medicine: therapeutic applications and developments.

            Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensity-modulated radiation therapy, protons, and the risk of second cancers.

              Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                Cancers
                Cancers
                Molecular Diversity Preservation International (MDPI)
                2072-6694
                September 2011
                12 August 2011
                : 3
                : 3
                : 3279-3330
                Affiliations
                [1. ] Instituto de Nanociencia de Aragón (INA), Mariano Esquillor, Edif. I+D, University of Zaragoza, Zaragoza 50018, Spain; E-Mails: arruebom@ 123456unizar.es (M.A.); bsaez@ 123456unizar.es (B.S.); jjlambea@ 123456hotmail.com (J.L.); atreszar@ 123456unizar.es (A.T.)
                [2. ] CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain; E-Mail: nvilaboa.hulp@ 123456salud.madrid.org (N.V.)
                [3. ] Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain
                [4. ] Servicio de Oncología Médica, Hospital Clínico Universitario Lozano Blesa, Avda. San Juan Bosco 50009, Zaragoza, Spain
                [5. ] Instituto Aragonés de Ciencias de la Salud (I+CS), Avda. Gómez Laguna, 25, Zaragoza 50009, Spain
                [6. ] Lonza Biologics Porriño, A relva s/n, Porriño (Pontevedra) 36410, Spain; E-Mail: monica.valladares@ 123456lonza.com (M.V.)
                [7. ] Immunology Department, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo (Pontevedra) 36310, Spain
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: africa@ 123456uvigo.es ; Tel.: +34-986812625; Fax: +34-986-812556.
                Article
                cancers-03-03279
                10.3390/cancers3033279
                3759197
                24212956
                6f1edcb4-7aa4-452f-ac6c-a2dedb0fe06d
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 16 June 2011
                : 07 July 2011
                : 08 August 2011
                Categories
                Review

                cancer,immunotherapy,nanotechnology,gene therapy,nanomedicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content247

                Cited by244

                Most referenced authors2,129