25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plant-virus interactions and the agro-ecological interface

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Top 10 plant viruses in molecular plant pathology.

          Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect vector interactions with persistently transmitted viruses.

            The majority of described plant viruses are transmitted by insects of the Hemipteroid assemblage that includes aphids, whiteflies, leafhoppers, planthoppers, and thrips. In this review we highlight progress made in research on vector interactions of the more than 200 plant viruses that are transmitted by hemipteroid insects beginning a few hours or days after acquisition and for up to the life of the insect, i.e., in a persistent-circulative or persistent-propagative mode. These plant viruses move through the insect vector, from the gut lumen into the hemolymph or other tissues and finally into the salivary glands, from which these viruses are introduced back into the plant host during insect feeding. The movement and/or replication of the viruses in the insect vectors require specific interactions between virus and vector components. Recent investigations have resulted in a better understanding of the replication sites and tissue tropism of several plant viruses that propagate in insect vectors. Furthermore, virus and insect proteins involved in overcoming transmission barriers in the vector have been identified for some virus-vector combinations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests

              A growing body of empirical work suggests that soil organisms can exert a strong role in plant community dynamics and may contribute to the coexistence of plant species. Some of this evidence comes from examining the feedback on plant growth through changes in the composition of the soil community. Host specific changes in soil community composition can generate feedback on plant growth and this feedback can be positive or negative. Previous work has demonstrated that negative soil community feedback can contribute to the coexistence of equivalent competitors. In this paper, I show that negative soil community feedback can also contribute to the coexistence of strong competitors, maintaining plant species that would not coexist in the absence of soil community dynamics. I review the evidence for soil community feedback and find accumulating evidence that soil community feedback can be common, strongly negative, and generated by a variety of complementary soil microbial mechanisms, including host-specific changes in the composition of the rhizosphere bacteria, nematodes, pathogenic fungi, and mycorrhizal fungi. Finally, I suggest topics needing further examination.
                Bookmark

                Author and article information

                Journal
                European Journal of Plant Pathology
                Eur J Plant Pathol
                Springer Nature
                0929-1873
                1573-8469
                March 2014
                November 23 2013
                : 138
                : 3
                : 529-547
                Article
                10.1007/s10658-013-0317-1
                6f12c51c-e960-4ddd-9392-c26601e055e6
                © 2013
                History

                Comments

                Comment on this article