19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural products are fascinating molecules in drug discovery for their exciting structure variability and also for their interaction with various targets. Drugs multi-targeting effect represents a more realistic approach to develop successful medications for many diseases. However, besides a large number of successful in vitro and in vivo studies, most of the clinical trials fail. This is generally related to the scarce water solubility, low lipophilicity and inappropriate molecular size of natural compounds, which undergo structural instability in biological milieu, rapid clearance and high metabolic rate. Additionally, some molecules are destroyed in gastric juice or suffer to a massive pre-systemic metabolism in the liver, when administered orally, limiting their clinical use. A reduced bioavailability can also be linked to drug distribution/accumulation in non-targeted tissues and organs that increase the side effects lowering the therapeutic efficacy and patient compliance. Nanomedicine represents a favourable tool to increase bioavailability and activities of natural products. Generally, nanovectors provide a large surface area and can overcome anatomic barriers. Each nanovector has its own advantages, disadvantages, and characteristics. In this review, different nanocarriers made of compounds which are Generally Recognized As Safe (GRAS) for the delivery of natural products, marketed as food supplements and medicines are reported.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Liposomes as nanomedical devices

          Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers.

            Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery.

              Design and functionalization strategies for multifunctional nanocarriers (e.g., nanoparticles, micelles, polymersomes) based on biodegradable/biocompatible polymers intended to be employed for active targeting and drug delivery are reviewed. This review will focus on the nature of the polymers involved in the preparation of targeted nanocarriers, the synthesis methods to achieve the desired macromolecular architecture, the selected coupling strategy, the choice of the homing molecules (vitamins, hormones, peptides, proteins, etc.), as well as the various strategies to display them at the surface of nanocarriers. The resulting morphologies and the main colloidal features will be given as well as an overview of the biological activities, with a special focus on the main in vivo achievements.
                Bookmark

                Author and article information

                Journal
                Current Medicinal Chemistry
                CMC
                Bentham Science Publishers Ltd.
                09298673
                October 11 2019
                October 11 2019
                : 26
                : 24
                : 4631-4656
                Affiliations
                [1 ]Department of Chemistry “Ugo Schiff”, University of Florence, via Ugo Schiff 6, 50121, Sesto Fiorentino, Florence, Italy
                [2 ]Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Yuquan Road 88, Tianjin, 300193, China
                Article
                10.2174/0929867325666181101110050
                30381065
                6efa42e4-0ec2-4d36-8c63-0bc3662bf689
                © 2019
                History

                Comments

                Comment on this article